Electronic supplementary information (ESI)

Oxygen vacancy rich Cu₂O based composite material with nitrogen

doped carbon as matrix for photocatalytic H₂ production and organic

pollutant removal

Lele Lu^a, Xinxin Xu^{*a}, Jiaming Yan^a, Fa-nian Shi^{*b} and Yuqiu Huo^{*a}

^a Department of Chemistry, College of Science, Northeastern University, Shenyang, Liaoning, 110819, People's Republic of China

^b School of Science, Shenyang University of Technology, Shenyang, Liaoning, People's Republic of China.

X-Ray crystallography

Suitable single crystal of **CuCP** was carefully selected under an optical microscope and glued on a glass fiber. Structural measurement was performed on a Bruker AXS SMART APEX II CCD diffractometer at 293 K. The structure was solved with the direct method and refined by the full-matrix least-squares method on *F*² using the SHELXTL crystallographic software package. Anisotropic thermal parameters were used to refine all non-hydrogen atoms. Carbon-bound hydrogen atoms were placed in geometrically calculated positions; Oxygen-bound hydrogen atoms were located in the difference Fourier maps, kept in that position and refined with isotropic temperature factors. The details have been deposited to the Cambridge Crystallographic Data Centre (CCDC 1812937). The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Empirical formula	C ₂₀ H ₁₈ CuN ₂ O ₅
Formula weight	429.90
Space group	Monoclinic
Crystal system	C2/c
Z	4
a (Å)	5.6629(3)
b (Å)	19.4888(10)
c (Å)	17.2426(8)
β(°)	99.1860(10)
Volume (ų)	1878.54(16)
F(000)	884
Reflections collected	6850
Reflections unique	2326
R(int)	0.0197
Goodness-of-fit	0.884
R ₁	0.0262
wR ₂	0.0971
R ₁ (all data)	0.0299
wR2 (all data)	0.1029

Table S1. Crystal data and structure refinement results for CuCP

Note. $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]^{1/2}$

 Table S2. Selected bond lengths and angles of CuCP

L.9538(11)	Cu(1)-O(1)	1.9538(11)
L.9932(13)	Cu(1)-N(1)#1	1.9932(13)
93.00(7)	O(1)#1-Cu(1)-N(1)#1	93.83(5)
93.83(5)	O(1)-Cu(1)-N(1)#1	167.88(5)
L67.88(5)	N(1)-Cu(1)-N(1)#1	81.31(7)
	.9538(11) .9932(13) 3.00(7) 3.83(5) 67.88(5)	.9538(11)Cu(1)-O(1).9932(13)Cu(1)-N(1)#13.00(7)O(1)#1-Cu(1)-N(1)#13.83(5)O(1)-Cu(1)-N(1)#167.88(5)N(1)-Cu(1)-N(1)#1

Symmetry transformations used to generate equivalent atoms: #1 -x, y, -z+1/2.

Table S3 Comparison of photocatalytic H_2 production rate reported in the literature

Photocatalyst	Catalyst dose (g)	H ₂ Production (μmol·h ⁻¹ ·g ⁻¹)	Ref.	
NPs/Cu ₂ O	0.003	47.0	S1	
C ₃ N ₄ /Pd/Cu ₂ O	0.015	32.5	S2	
g-C ₃ N ₄ /Cu ₂ O	0.300	265.0	S 3	
NCs/Cu ₂ O	0.150	132.7	S4	
HD-Au-NR/Cu₂O	0.005	80.2	C E	
HD-Au-NR/TiO ₂ /Cu ₂ O	0.005	105.1	30	
Cu ₂ O	0.100	29.78	S6	
NCs/Cu ₂ O	0.025	15.0	S7	
Cu/Cu ₂ O@NC(A)	0.020	379.6	Our work	

with Cu_2O based composite photocatalysts and our works.

	Cu/Cu ₂ O@NC(A)	Cu/Cu ₂ O@NC(B)	Cu/Cu ₂ O@NC(C)
Cu (%)	4.5	4.4	4.2
C (%)	89.2	89.5	89.9
N (%)	3.0	2.9	2.8
H (%)	1.1	1.3	1.1

Table 4 The contents of Cu, C, N and H in Cu/Cu₂O@NC.

Fig. S2 FTIR of Cu/Cu₂O@NC

Fig. S3 XPS survey of (a) Cu/Cu₂O@NC(A); (b) Cu/Cu₂O@NC(B); (c) Cu/Cu₂O@NC(C).

Fig. S4 C1s of (a) Cu/Cu₂O@NC(A); (b) Cu/Cu₂O@NC(B); (c) Cu/Cu₂O@NC(C).

Fig. S5 UV-vis spectra of 4-nitrophenol without Cu/Cu₂O@NC.

References

- (S1) D. Mateo, I. Esteve-Adell, J. Albero, A. Primo and H. García, *Appl. Catal. B: Environ.*, 2017, **201**,582-590.
- (S2) W.J. Yin, L.J. Bai, Y.Z. Zhu, S.X. Zhong, L.H. Zhao, Z.Q. Li and S. Bai, ACS Appl. Mater. Interfaces, 2016, **8**, 23133-23142.
- (S3) L. Liu, Y.H. Qi, J.S. Hu, Y.H. Liang and W.Q. Cui, *Appl. Surf. Sci.*, 2015, **351**, 1146-1154.
- (S4) F. Wang, Y.T. Zhao, F. Feng, C.L. Li, F. Cao and W.F. Shangguan, *J. Alloys Compd.*, 2016, **688**, 632-638.
- (S5) X.J. Yu, F.Z. Liu, J.L. Bi, B. Wang and S.C. Yang, *Nano Energy*, 2017, **33**, 469-475.
- (S6) Z.Y. Lin, L.H. Li, Li.L. Yu, W.J. Li and G.W. Yang, *Phys. Chem. Chem. Phys.*, 2017, 19, 8356-8362.
- (S7) S. Kumar, C.M.A. Parlett, M.A. Isaacs, D.V. Jowett, R.E. Douthwaite, M.C.R. Cockett and A.F. Lee, *Appl. Catal. B: Environ.*, 2016, **189**, 226-232.