Supporting Information

Enhancement of visible-light-driven CO₂ reduction performance using amine-functionalized zirconium metal-organic framework

Manying Sun, a Siyu Yan, a Yujia Sun, a Xiaohan Yang, a Zhifen Guo, b Jianfeng Du, c Dashu Chen,* a Peng Chen, d and Hongzhu Xing* b

a Department of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, China. E-mail: chends410@nenu.edu.cn
b Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun, 130024, China. E-mail: xinghz223@nenu.edu.cn
c State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
d Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
Fig. S1 The TG curve of as-synthesized Zr-SDCA-NH$_2$.
Fig. S2 The IR spectrum of as-synthesized Zr-SDCA-NH$_2$.
Fig. S3 The isosteric heat (Q_{st}) of CO$_2$ adsorption for Zr-SDCA-NH$_2$ calculated from the CO$_2$ adsorption isotherms at 273 and 298 K, employing the Clausius-Clapeyron equation.
Fig. S4 The UV–vis spectra of H₂SDCA ligand in the solid state.
Fig. S5 The Tauc plot of H$_2$SDCA-NH$_2$ ligand.
Fig. S6 Mott-Schottky plots of H₂SDCA-NH₂ ligand in 0.2 M Na₂SO₄ aqueous solution.
Fig. S7 The PXRD pattern of Zr-SDCA-NH$_2$ after the photocatalytic experiment.
Fig. S8 The recycling of Zr-SDCA-NH$_2$ for CO$_2$ photoreduction under 6 h visible light irradiation.
Table S1 The visible-light-driven photocatalytic performances of amine-functionlized Zr-MOFs for CO₂ reduction to produce formate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂N-UIO-66(Zr)</td>
<td>46.3</td>
<td>metal cluster</td>
<td>200 440</td>
<td>Zr₆O₄(OH)₄(L₁)₆</td>
<td>1</td>
</tr>
<tr>
<td>Mixed H₂N-UIO-66(Zr)</td>
<td>73.4</td>
<td>metal cluster</td>
<td>200 550</td>
<td>Zr₆O₄(OH)₄(L₁)₆(L₂)₁₂</td>
<td>1</td>
</tr>
<tr>
<td>H₂N-UIO-66(Zr,Ti)-120-16</td>
<td>71.9</td>
<td>metal cluster</td>
<td>200 480</td>
<td>Zr₂Ti₂O₄(OH)₄(L₁)₆</td>
<td>2</td>
</tr>
<tr>
<td>Zr-SDCA-NH₂</td>
<td>96.2</td>
<td>metal cluster, organic ligand</td>
<td>200 600</td>
<td>Zr₂O₄(OH)₄(L₁)₆</td>
<td>This work</td>
</tr>
</tbody>
</table>

*H₂L₁ = 2-aminoterephthalic acid, H₂L₂ = 2,5-diaminoterephthalic acid, H₂L₂ = 2,2’-diamino-4,4’-stilbenedicarboxylic acid.

References
