Supporting Information

The Synthesis of LA-Fe$_3$O$_4$@PDA-PEG-DOX for Photothermal-Chemotherapy Therapy

Yuhua Chen, Huiming Lin,* Feng Zhang, Qian Wang, Ruihan Tong, Na An, and Fengyu Qu*

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
Scheme S1. Schematic illustration of the reaction process of mPEG-NH$_2$ with Fe$_3$O$_4$@PDAs.

Scheme S2. Schematic illustration of the different direction of the applied magnetic field.
Figure S1. The large angle XRD patterns of Fe$_3$O$_4$, Fe$_3$O$_4$@PDA3.

Figure S2. The digital photos of (a) Fe$_3$O$_4$, (b) Fe$_3$O$_4$@PDA3, (c) Fe$_3$O$_4$@PDA3-PEG solutions in PBS.
Figure S3. TEM images of PDA.

Figure S4. The fluorescence spectra of DOX and LA-Fe$_3$O$_4$@PDA-PEG-DOX under 480 nm excitation.

DOX reveals red fluorescence at 600-680 nm excited by 480 nm. However, the obvious fluorescence quenching of LA-Fe$_3$O$_4$@PDA-PEG-DOX is derived from the strong $\pi-\pi$ stacking of DOX and PDA.
Figure S5. TEM images of LA-Fe$_3$O$_4$@PDA3-PEG-DOX uptake by HepG2 cells.

TEM images show the remarkably endocytosed vesicles about 300-1000 nm suggesting that uptake of LA-Fe$_3$O$_4$@PDA3-PEG-DOX was mainly through endocytosis and macropinocytosis.
Figure S6. Flow cytometry analysis of the HepG2 cells incubated with FITC modified LA-Fe₃O₄@PDA3-PEG-DOX+NIR (808 nm 1 W cm⁻² 30 min) under different direction of magnetic field (a: without, b: top, c: side, d: bottom).