Electronic Supplementary Information for

Preparation and reactivity of a square-planar PNP cobalt(II)-hydrido complex: Isolation of the first {Co-NO}⁸-hydride

V. Mahesh Krishnan, Hadi D. Arman, and Zachary J. Tonzetich*

Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249 zachary.tonzetich@utsa.edu

Contents	Pages	
Figure S1 . ¹ H NMR spectrum of 2-H in benzene- d_6 .	S2	
Figure S2 . ¹ H NMR spectrum of 2-BH ₄ in benzene- d_6 .	S 3	
Figure S3. ¹ H NMR spectrum of 2-O₂CH in benzene- d_6 .	S 4	
Figure S4. ¹ H NMR spectrum of 1-NO(H) in benzene- d_6 .	S 5	
Figure S5. ¹ H NMR spectrum of the reaction of 2-H with CO in benzene- d_6 .	S 6	
Figure S6. ¹ H NMR spectrum of the reaction of $2-BH_4$ with CO and Et ₃ N in benzene- d_6 .	S 7	
Figure S7. ¹ H NMR spectrum of the reaction of $2-BH_4$ with NO and Et ₃ N in benzene- d_6 .	S 8	
Figure S8. IR spectrum of 2-H.	S 9	
Figure S9. IR spectrum of 2-BH ₄ .	S10	
Figure S10. IR spectrum of 2-O ₂ CH.		
Figure S11. IR spectrum of 1-NO(H).	S12	
Figure S12. Cyclic voltammogram of 2-Cl in tetrahydrofuran.		
Figure S13. Thermal ellipsoid (50%) drawing of $2-O_2CH$	S14	
Table S1. Crystallographic data and refinement parameters.	S15	

Figure S1. ¹H NMR spectrum of recrystallized **2-H** in benzene- $d_6(s)$. Asterisks denote resonances of **1-N**₂, which comprises ~25% of the sample according to peak integration.

Figure S2. ¹H NMR spectrum of **2-BH**₄ in benzene- $d_6(s)$. Crosses denote peaks due to residual pentane from recrystallization.

Figure S3. ¹H NMR spectrum of **2-O₂CH** in benzene- $d_6(s)$. Crosses denote peaks due to residual tetrahydrofuran.

Figure S4. ¹H NMR spectrum of **1-NO(H)** in benzene- $d_6(s)$. Asterisk denote minor impurities arising from the presence of **1-N₂** in samples of **2-H** used to produce **1-NO(H)**.

Figure S5. ¹H NMR spectrum of the reaction of **2-H** with CO in benzene- d_6 (*s*) The labeled peaks correspond to **1-CO**. The wide sweep width highlights the lack of any Co(II) species. The small resonance in the red box at 4.47 ppm corresponds to H₂, one of the byproducts of the reaction.

Figure S6. ¹H NMR spectrum of the reaction of **2-BH**₄ with CO in benzene- $d_6(s)$ in the presence of Et₃N. The labeled peaks correspond to **1-CO**. The wide sweep width highlights the lack of any Co(II) species. The small resonance in the red box at 4.47 ppm corresponds to H₂, one of the byproducts of the reaction. The red crosses denote peaks for the other byproduct, Et₃N·BH₃.

Figure S7. ¹H NMR spectrum of the reaction of $2-BH_4$ with NO in benzene- $d_6(s)$ in the presence of Et₃N. The wide sweep width highlights the lack of any Co(II) species. The triplet resonance in the red box at -14.52 ppm corresponds to the hydride resonance of **1-NO(H)**.

Figure S8. IR spectrum of **2-H** as a KBr pellet. The double dagger denotes the peak (1751 cm⁻¹) assigned to the Co-H stretch (compare Figure S11 below). The asterisk corresponds to the peak for the N-N stretch of the **1-N**₂ impurity.

Figure S9. IR spectrum of 2-BH₄ as a KBr pellet.

Figure S10. IR spectrum of 2-O₂CH as a KBr pellet.

Figure S11. IR spectrum of **1-NO(H)** as a KBr pellet. The double dagger denotes the peak (1754 cm⁻¹) assigned to the Co-H stretch. The peak marked with an asterisk likely arises from an impurity attributable to the presence of **1-N**₂ in the starting material.

Figure S12. Cyclic voltammograms of **2-Cl** at a platinum electrode in tetrahydrofuran. The supporting electrolyte was $0.2 \text{ M Bu}_4\text{NPF}_6$ and the scan rate was 50 mV/s. The left panel displays the anodic sweep and the right displays the cathodic sweep.

Figure S13. Thermal ellipsoid (50%) drawing of **2-O₂CH** showing both crystallographicallyindependent molecules in the asymmetric unit. Hydrogen atoms omitted for clarity.

Compound	2-BH ₄	2-O ₂ CH	1-NO(H) [†]
Empirical formula	C ₂₂ H ₄₆ BCoNP ₂	$C_{23}H_{43}CoNO_2P_2$	$C_{22}H_{42}CoN_2OP_2$
Formula weight (g/mol)	456.28	486.45	471.44
Temperature (K)	98(2)	293(2)	98(2)
Crystal system, space group	Monoclinic $P2_1/n$	Monoclinic $P2_1$	Monoclinic $P2_1$
Unit cell dimensions (Å, deg)	a = 15.2602(10) b = 11.3904(6) c = 15.6393(12)	a = 10.6498(4) b = 15.2862(5) c = 15.6734(6)	a = 7.7482(3) b = 14.9473(8) c = 10.7812(6)
	$\beta = 112.919(8)$	$\beta = 97.796(4)$	$\beta = 97.987(4)$
Volume (Å ³)	2503.8(3)	2528.0(2)	1236.5(1)
Z	4	4	2
Calculated density (g/cm ³)	1.210	1.278	1.266
Absorption coefficient (mm ⁻¹)	0.821	0.824	0.838
F(000)	988	1044	506
Crystal size (mm)	$0.40 \times 0.07 \times 0.03$	$0.33 \times 0.17 \times 0.07$	$0.40 \times 0.23 \times 0.07$
Θ range	2.279 to 24.550°	2.345 to 25.050°	2.344 to 25.496°
Limiting indices	$-17 \le h \le 17,$ $-13 \le k \le 12,$ $-18 \le l \le 18$	$-12 \le h \le 12,$ $-17 \le k \le 18,$ $-18 \le l \le 18$	$-9 \le h \le 9,$ -17 $\le k \le 18,$ -13 $\le l \le 12$
Reflections collected / unique	24839 / 4185 [R _{int} = 0.0441]	51235 / 8784 [R _{int} = 0.0739]	13323 / 4528 [R _{int} = 0.0304]
Completeness to Θ	99.9%	99.9%	99.9%
Absorption correction	multi-scan ABSCOR	multi-scan ABSCOR	multi-scan ABSCOR
Min. and max transmission	0.754 and 1.000	0.629 and 1.000	0.858 and 1.000
Data / restraints / parameters	4185 / 6 / 223	8784 / 1 / 547	4528 / 1 / 265
Goodness-of-fit on F^2	1.109	1.094	1.094
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0887,$ $wR_2 = 0.1679$	$R_1 = 0.0471,$ w $R_2 = 0.0937$	$R_1 = 0.0340,$ $wR_2 = 0.0782$
R indices (all data)	$R_1 = 0.0909,$ w $R_2 = 0.1690$	$R_1 = 0.0487,$ $wR_2 = 0.0944$	$R_1 = 0.0347,$ $wR_2 = 0.0785$
Largest diff. peak and hole $(e \cdot Å^{-3})$	0.967 and -0.946	0.484 and -0.434	0.910 and -0.518

Table S1. Crystallographic data and refinement parameters for 2-BH₄, 2-O₂CH, and 1-NO(H).[‡]

[‡]Refinement method was full-matrix least-squares on F²; wavelength = 0.71073 Å. R₁ = $\sum ||F_o| - |F_c|| / \sum |F_o|;$ wR₂ = { $\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]$ }^½. [†]The hydride ligand could not be located in the difference map and was therefore not included in the refinement.