Living ring-opening polymerization of ε-caprolactone catalyzed by β-quinolyl-enamino aluminium complexes: ligand electronic effect†

Peng Wang,a Jianbin Chao and Xia Chen a,b,*

a School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
c Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China

Figure S1-S14 1H and 13C NMR spectra of all Al complexes……………………………………..2-8
Figure S15 The 1H NMR spectra of complexes 3 and 6 with BnOH in C6D6…………………9
Figure S1 1H NMR spectrum of complex 1 (600 MHz, CDCl$_3$)
Figure S2 13C NMR spectrum of complex 1 (151 MHz, CDCl$_3$)

Figure S3 1H NMR spectrum of complex 2 (600 MHz, CDCl$_3$)
Figure S4 13C NMR spectrum of complex 2 (151 MHz, CDCl$_3$)

Figure S5 1H NMR spectrum of complex 3 (600 MHz, CDCl$_3$)
Figure S6 13C NMR spectrum of complex 3 (151 MHz, CDCl$_3$)

Figure S7 1H NMR spectrum of complex 4 (600 MHz, CDCl$_3$)
Figure S8 13C NMR spectrum of complex 4 (151 MHz, CDCl$_3$)

Figure S9 1H NMR spectrum of complex 5 (600 MHz, CDCl$_3$)
Figure S10 13C NMR spectrum of complex 5 (151 MHz, CDCl$_3$)

Figure S11 1H NMR spectrum of complex 6 (600 MHz, CDCl$_3$)
Figure S12. 13C NMR spectrum of complex 6 (151 MHz, CDCl$_3$)

Figure S13. 1H NMR spectrum of complex 7 (600 MHz, CDCl$_3$)
Figure S14 ^{13}C NMR spectrum of complex 7 (151 MHz, CDCl$_3$)

Fig. S15 The ^1H NMR spectra of complexes 3 and 6 with BnOH in C$_6$D$_6$