Supporting Materials

An unusual (3,4,4)-coordinated luminescent zinc(II) coordination

polymer for selective detection of nitroaromatics, ferric and

chromate ions: A versatile luminescent sensor

Ya-Qian Zhang,^a Vladislav A. Blatov,^{bc} Tian-Rui Zheng,^a Chang-Hao Yang,^c Lin-Lu Qian,^a Ke Li,^a Bao-Long Li^{*a} and Bing Wu^a

^a State and Local Joint Engineering Laboratory for Functional Polymeric Materials,

College of Chemistry, Chemical Engineering and Materials Science, Soochow

University, Suzhou 215123, PR China. E-mail: libaolong@suda.edu.cn

^b Samara Center for Theoretical Materials Science (SCTMS), Samara University, Ac.

Pavlov St. 1, Samara 443011, Russia

^c School of Materials Science and Engineering, Northwestern Polytechnical

University, Xi'an, Shaanxi 710072, PR China

Formula	C ₅₄ H ₄₈ N ₁₈ O ₁₅ Zn ₃
Fw	1385.21
T/K	296(2)
Crystal system	Monoclinic
Space group	<i>C</i> 2/c
<i>a</i> /Å	16.1735(12)
<i>b</i> /Å	12.0443(10)
<i>c</i> /Å	31.096(2)
α (°)	90
β (°)	100.881(2)
γ (°)	90
$V/Å^3$	5948.6(8)
<i>F</i> (000)	2832
Ζ	4
ρ_{calcd} (g cm ⁻³)	1.547
$\mu(mm^{-1})$	1.282
Reflections collected	84856
Unique reflections	6842 (R(int) = 0.1060)
Parameter	557
Goodness of fit	1.030
$R_1[I > 2\sigma(I)]$	0.0771
wR_2 (all data)	0.2250

Table S1. Crystallographic data for 1

Table S2 Selected bond lengths and angles for 1 (Å and $^{\rm o}).$

Zn1-O1	1.989(4)	Zn1-O3A	1.969(4)
Zn1-N1	2.004(6)	Zn1-N7	1.989(6)
Zn2-O5B	2.211(5)	Zn2-O5C	2.211(5)
Zn2-O6B	2.217(5)	Zn2-O6C	2.217(5)
Zn2-N4	2.042(5)	Zn2-N4D	2.042(5)
O1-Zn1-O3A	97.93(16)	01-Zn1-N1	117.8(2)
O1-Zn1-N7	108.8(2)	O3A-Zn1-N1	110.2(2)
O3A-Zn1-N7	107.4(2)	N1-Zn1-N7	113.3(2)
O5B-Zn2-O6B	57.87(18)	O5B-Zn2-O5C	90.6(3)
O5B-Zn2-O6C	105.2(2)	O5C-Zn2-O6B	105.15(19)
O5C-Zn2-O6C	57.87(18)	O6B-Zn2-O6C	157.8(3)
N4-Zn2-O5B	144.15(19)	N4-Zn2-O5C	97.59(19)
N4-Zn2-O6B	86.3(2)	N4-Zn2-O6C	108.7(2)
N4D-Zn2-O5B	97.59(19)	N4D-Zn2-O5C	144.15(19)

N4D-Zn2-O6B	108.7(2)	N4D-Zn2-O6C	86.3(2)
N4-Zn2-N4D	95.9(3)		

Symmetry transformations used to generate equivalent atoms: A 1/2+x, 1/2+y, +z; B 1-x, -y, 1-z; C +x, -y, 1/2+z; D 1-x, +y, 3/2-z.

Table S3 Average excited state lifetime ($<\tau>$) values of 1 and in the presence of quenchers ($\lambda_{ex} = 320 \text{ nm}$, $\lambda_{em} = 410 \text{ nm}$).

СР	al	a2	a3	τ1(n	$\tau 2(ns)$	τ3(ns)	<\u03ct>(ns
				s))
1	0.57	0.39	0.04	2.04	6.38	15.48	4.32
1+2 ppm TNP	0.30	0.55	0.15	1.17	3.33	10.37	3.75
1+0.05 mM Fe ³⁺	0.39	0.36	0.25	2.28	0.38	7.30	2.81
1+0.1mM Cr ₂ O ₇ ²⁻	0.40	0.44	0.16	1.32	3.94	10.14	3.90

Table S4 A comparison of the Stern-Volmer constant (K_{sv}), detection limit and medium used for Fe³⁺, Cr₂O₇²⁻, or CrO₄²⁻ detection for MOFs/CPs reported in references.

MOF/CP	Analyte	Solvent	Ksv	Detection	Ref.
				Limit	
${[Tb_4(OH)_4(DSOA)_2(H_2O)_8]8H_2O}_n$	Fe ³⁺	DMF	3.543×10 ³		S1
			M-1		
[Cd(5-asba)(bimb)] _n	Fe ³⁺	H ₂ O	1.78×10 ⁴ M ⁻	0.01875	S2
			1	mM	
[(CH ₃) ₂ NH ₂][Tb(bptc)]xSolvents	Fe ³⁺	EtOH		0.1801	S3
				mM	
$[H_2N(Me)_2][Eu_3(OH)(bpt)_3(H_2O)_3]$	Fe ³⁺	H ₂ O	3.2666×10 ⁴		S4
(DMF) ₂ (H ₂ O) ₄			M-1		
[Zn5(hfipbb) ₄ (trz) ₂ (H ₂ O) ₂]	Fe ³⁺	H ₂ O		0.20 mM	S5
[Me ₂ NH ₂][Eu(CPA) ₂ (H ₂ O) ₂]	Fe ³⁺	H ₂ O	1.04111×10	10 ⁻⁷ M	S6
			⁴ M ⁻¹		
${[Eu(L)(BPDC)_{0.5}(NO_3)]H_2O}_n$	Fe ³⁺	DMF	5.16×10 ⁴ M ⁻		S7
			1		
${[Tb(L)(BPDC)_{0.5}(NO_3)]H_3O}_n$	Fe ³⁺	DMF	4.30×10 ⁴ M		
			1		
${[Cd(L2)(HIP)]2H_2O}_n$	Fe ³⁺	DMF	5.57×10 ⁴ M ⁻	2.5 μΜ	S8

			1		
${(Me_2NH_2)[Zn_2(L)(H_2O)]0.5DMF}_n$	Fe ³⁺	DMF	7.83×10 ³ M ⁻	1.44 ×10 ⁻	S9
			1	⁵ M	
${[Eu(Hpzbc)_2(NO_3)]H_2O}_n$	Fe ³⁺	EtOH		0.026	S10
				mM	
	Cr ₂ O ₇ ²⁻	EtOH		0.022	
				mM	
Eu ₄ L ₃	Fe ³⁺	DMF	2.942×10 ³	10 ⁻⁵ M	S11
			M-1		
	Cr ₂ O ₇ ²⁻	DMF	1.526×10 ³	10 ⁻⁵ M	
			M ⁻¹		
[Zn ₆ L ₃ (DMA) ₄]5DMA	Fe ³⁺	DMF		18 ppm	S12
[Eu ₃ L ₂ (OH)(DMF) _{0.22} (H ₂ O) _{5.78}]guest	Fe ³⁺	DMF		0.018	S13
				mM	
	Cr ₂ O ₇ ²⁻	DMF	6.63×10 ³ M ⁻		
			1		
${[Cd(L)(BPDC)]2H_2O}_n$	Fe ³⁺	H ₂ O	3.63×10 ⁴ M ⁻	2.21×10-6	S14
			1	М	
	Cr ₂ O ₇ ²⁻	H ₂ O	6.4×10 ³ M ⁻¹	3.76×10-5	
				М	
${[Cd(L)(SDBA)(H_2O)]0.5H_2O}_n$	Fe ³⁺	H ₂ O	3.59×10 ⁴ M ⁻	7.14×10 ⁻⁶	
			1	М	
	Cr ₂ O ₇ ²⁻	H ₂ O	4.97×10 ³ M ⁻	4.86×10-5	
			1	М	
[Tb(TBOT)(H ₂ O)](H ₂ O) ₄ (DMF)(NMP) _{0.5}	Fe ³⁺	H ₂ O	5.51×10 ⁴ M ⁻	0.13 mM	S15
			1		
	$Cr_2O_7^{2-}$	H ₂ O	1.37×10 ⁴ M ⁻	0.14 mM	
			1		
$[Zn(IPA)(L)]_n$	Cr ₂ O ₇ ²⁻	H ₂ O	1.37×10 ³ M ⁻	12.02	S16
			1	μМ	
	CrO ₄ ²⁻	H ₂ O	1.00×10 ³ M ⁻	18.33	
			1	μМ	
$[Cd(IPA)(L)]_n$	Cr ₂ O ₇ ²⁻	H ₂ O	2.91×10 ³ M ⁻	2.26 µM	
			1		
	CrO ₄ ²⁻	H ₂ O	1.30×10 ³ M ⁻	2.52 μM	
			1		
${[Zn_3(mtrb)_3(btc)_2]} \cdot 3H_2O_n$	Fe ³⁺	H ₂ O	6.50×10 ³ M ⁻	1.78 μM	This work
			1		
	Cr ₂ O ₇ ²⁻	H ₂ O	4.62×10 ³ M ⁻	2.83 µM	
			1		
	CrO ₄ ²⁻	H ₂ O	2.77×10 ³ M ⁻	4.52 μΜ	
			1		

References

S1 X.Y. Dong, R. Wang, J.Z. Wang, S.Q. Zang, T.C.W. Mak, J. Mater. Chem. A, 2015, 3, 641.

- S2 Y. J. Yang, M.J. Wang and K. L. Zhang, J. Mater. Chem. C, 2016, 4, 11404.
- S3 X. L. Zhao, D. Tian, Q. Gao, H. W. Sun, J. Wu and X. H. Bu, Dalton Trans., 2016, 45, 1040.
- S4 S. Xing, Q. Bing, L. Song, G. Li, J. Liu, Z. Shi, S. Feng, Chem. Eur. J., 2016, 22, 16230.
- S5 B. L. Hou, D. Tan, J. Liu, L. Z. Dong, S. L.Li, D. S. Li and Y. Q. Lan, *Inorg. Chem.*, 2016, 55, 10580.
- S6 Y. P. Wu, G. W. Xu, W. W. Dong, J. Zhao, D. S. Li, J. Zhang and X. H. Bu, *Inorg. Chem.*, 2017, 56, 1402.
- S7 W. Yan, C. L. Zhang, S. G. Chen, L. J. Han and H. G. Zheng, ACS Appl. Mater. Interface, 2017, 9, 1629.
- S8 X. Zhang, Z. J. Wang, S. G. Chen, Z. Z. Shi, J. X. Chen and H.G. Zheng, *Dalton Trans.*, 2017, 46, 2332.
- S9 J. Wang, X. R. Wu, J. Q. Liu, B. H. Li, A. Singh, A. Kumar and S. R. Batten, *CrystEngComm*, 2017, 19, 3519.
- S10 G. P. Li, G. Liu, Y. Z. Li, L. Hou, Y. Y. Wang and Z. Zhu, Inorg. Chem., 2016, 55, 3952;
- S11 W. Liu, X. Huang, C. Xu, C. Y. Chen, L. Z. Yang, W. Dou, W. M. Chen, H. Yang and W. S. Liu, *Chem. Eur. J.*, 2016, 22, 18769.
- S12 B. H. Li, J. Wu, J. Q. Liu, C. Y. Gu, J. W. Xu, M. M. Luo, R. Yadav, A. Kumar and S. R. Batten, *ChemPlusChem*, 2016, 81, 885.
- S13 J. Q. Liu, G. P. Li, W. C. Liu, Q. L. Li, B. H. Li, R. W. Gable, L. Hou and S. R. Batten, *ChemPlusChem*, 2016, 81, 1299.
- S14 S. G. Chen, Z. Z. Shi, L. Qin, H. L. Jia and H. G. Zheng, Cryst. Growth Des., 2017, 17, 67.
- S15 M. Chen, W. M. Xu, J. Y. Tian, H. Cui, J. X. Zhang, C. S. Liu, M. Du, J. Mater. Chem. C, 2017, 5, 2015.
- S16 B. Parmar, Y. Rachuri, K. K. Bisht, R. Laiya and E. Suresh, Inorg. Chem., 2017, 56, 2627.

Fig. S1 (a) The coordination environment of Zn(II) atoms in 1.

Fig. S1 (b) Side viewing the $[Zn_3(btc)_2]_n$ 2D network in 1.

Fig. S1 (c) The coordination mode of mtrb ligand in 1.

Fig. S1 (d) The 4-coordinated Zn(II) atom in 1.

Fig. S2 Solid-state emission spectra of 1 and the free mtrb ligand at room temperature.

Fig. S3 Emission spectra of 1 in different solvents (excited at 320 nm).

Fig. S4 Reproducibility of the quenching ability of 1 in the detection of TNP.

Fig. S5 PXRD patterns of the simulated and measured of **1**, cycle 1 – 5 after detection of TNP.

Fig. S6 (a) Emission spectra of 1 dispersed in MeOH in the presence of various amounts of 2,4-DNP.

Fig. S6 (b) The relationship between I_0/I and different concentration of 2,4-DNP. Insert: linear plot of I_0/I at low concentration of 2,4-DNP.

Fig. S7 (a) Emission spectra of 1 dispersed in MeOH in the presence of various amounts of 4-NP.

Fig. S7 (b) The relationship between I_0/I and different concentration of 4-NP. Insert: linear plot of I_0/I at low concentration of 4-NP.

Fig. S8 (a) Emission spectra of 1 dispersed in MeOH in the presence of various amounts of ANP.

Fig. S8 (b) The relationship between I_0/I and different concentration of ANP. Insert: linear plot of I_0/I at low concentration of ANP.

Fig. S9 (a) Emission spectra of 1 dispersed in MeOH in the presence of various amounts of 2-NP.

Fig. S9 (b) The relationship between I_0/I and different concentration of 2-NP. Insert: linear plot of I_0/I at low concentration of 2-NP.

Fig. S10 PXRD patterns of the measured, simulated and measured of 1, after detection of nitroaromatics analytes in MeOH solutions.

Fig. S11 Fluorescence decay of **1** and **1** in the presence of 2 ppm TNP (IRF = Instrument Response Function) ($\lambda_{ex} = 320 \text{ nm}$, $\lambda_{em} = 410 \text{ nm}$).

Fig. S12 Emission spectra of **1** dispersed in aqueous solution in the presence of different metal cations (3.0 mM).

Fig. S13 Reproducibility of the quenching ability of 1 in the detection of Fe³⁺.

Fig. S14 PXRD patterns of the simulated and measured of 1, cycle 1 – 5 after detection of Fe^{3+} .

Fig. S15 Emission intensity of 1 dispersed in the aqueous solution of Fe^{3+} (1.0 mM) in the presence of different metal cations (1.0 mM).

Fig. S16 Emission spectra of 1 dispersed in aqueous solution in the presence of different anions (1.0 mM).

Fig. S17 Reproducibility of the quenching ability of 1 in the detection of $Cr_2O_7^{2-}$.

Fig. S18 PXRD patterns of the simulated and measured of 1, cycle 1 – 5 after detection of $Cr_2O_7^{2-}$.

Fig. S19 Reproducibility of the quenching ability of 1 in the detection of CrO_4^{2-} .

Fig. S20 PXRD patterns of the simulated and measured of 1, cycle 1 – 5 after detection of CrO_4^{2-} .

Fig. S21 Emission intensity of 1 dispersed in the aqueous solution of $Cr_2O_7^{2-}$ (0.9 mM), or CrO_4^{2-} (1.5 mM) in the presence of different ions (3.0 mM).

Fig. S22 Fluorescence decay of 1 and 1 in the presence of 0.05 mM Fe³⁺ (IRF = Instrument Response Function) ($\lambda_{ex} = 320 \text{ nm}$, $\lambda_{em} = 410 \text{ nm}$).

Fig. S23 Fluorescence decay of 1 and 1 in the presence of 0.1 mM $Cr_2O_7^{2-}$ (IRF = Instrument Response Function) ($\lambda_{ex} = 320 \text{ nm}$, $\lambda_{em} = 410 \text{ nm}$).

Fig. S24 Photocatalytic degradation efficiencies of the MB solution under UV light irradiation using catalyst 1 and blank experiment (only H_2O_2).