Supporting Information

Bright green-to-yellow emitting Cu(I) complexes based on bis(2-pyridyl)phosphine oxides: synthesis, structure and effective thermally activated-delayed fluorescence

Alexander V. Artem'ev,*^a Maxim R. Ryzhikov,^{a,b} Ilya V. Taidakov,^{c,d} Mariana I. Rakhmanova,^a Evgenia A. Varaksina,^c Irina Yu. Bagryanskaya,^{b,e} Svetlana F. Malysheva,^f Nataliya A. Belogorlova^f

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation

^b Novosibirsk State University, (National Research University), Department of Natural Sciences, 2, Pirogova Str., Novosibirsk 630090, Russian Federation

^c P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation

^{*d} Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation*</sup>

^e N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation

^f A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation

*Author for correspondence: chemisufarm@yandex.ru (Alexander V. Artem'ev)

Table of Contents

Pages

- S2-3 X-Ray crystallography
- S4-8 FT-IR spectra of 1-8
- S8-9 ESI-MS spectra of **1**, **3** and **5**
- S9 V.T. ³¹P NMR spectra of **5**
- S10-17 Photophysical data
- S18-20 Computation details
- S20-21 TGA/DTA curves for **1** and **6**

X-Ray crystallography

 Table S1. Data collection and refinement parameters for 2–7.

Compound	2	3 ·2/3MeCN	4	5	6	7	
CCDC number	1550541	1550542	1550543	1577810 1550544		1550545	
Empirical formula	$C_{24}H_{26}Cu_2I_2N_4O_2P_2$	$C_{39.33}H_{56}Cu_2I_2N_{4.67}O_2P_2$	$C_{34}H_{30}Cu_2I_2N_4O_2P_2$	$C_{42}H_{34}Cu_2I_2N_4O_2P_2$	$C_{24}H_{22}Cu_2N_6O_2P_2S_2$	$C_{30}H_{34}Cu_2N_6O_2P_2S_2$	
Formula mass [g/mol]	845.31	1069.04	969.44	1069.55	679.62	763.77	
Space group	C2/c	P-1	C2/c	P-1	P-1	P-1	
<i>a</i> [Å]	8.6569(3)	9.9811(4)	22.6984(7)	12.8420(9) 8.4316(4)		8.8655(10)	
b [Å]	15.0992(5)	18.1601(8)	13.3472(4)	19.1700(12)	8.5325(4)	14.2395(16)	
<i>c</i> [Å]	21.8930(8)	19.7982(9)	23.1883(6)	20.1670(13)	11.4693(6)	14.5066(16)	
α [°]	90.00	71.782(2)	90.00	111.493(3)	74.268(2)	109.975(5)	
в [°]	92.3170(10)	80.077(2)	90.8620(10)	94.250(3)	71.999(2)	90.384(5)	
γ [°]	90.00	84.603(2)	90.00	108.188(3)	62.187(2)	103.193(5)	
<i>V</i> [Å ³]	2859.34(17)	3354.6(3)	7024.3(4)	4287.8(5)	686.14(6)	1668.5(3)	
Ζ	4	3	8	4	1	2	
D _{calcd.} [g⋅cm ⁻³]	1.964	1.588	1.833	1.657	1.645	1.520	
μ [mm ⁻¹]	3.788	2.440	3.097	2.546 1.853		1.533	
Temperature [K]	296(2)	200(2)	200(2)	296(2)	296(2)	296(2)	
Reflections collected	17174	29117	66274	62633	12135	18525	
Independent reflections	3293 [R _{int} = 0.0448]	11792 [<i>R</i> _{int} = 0.0317]	9742 [<i>R</i> _{int} = 0.0432]	14604 [R _{int} = 0.0553]	3615 [<i>R</i> _{int} = 0.0295]	5640 [$R_{int} = 0.0475$]	
R ₁ , wR ₂ [I > 2σ(I)]	0.0256, 0.0652	0.0750, 0.1820	0.0259, 0.0595	0.0873, 0.1821	0.0269, 0.0755	0.0834, 0.1904	
R_1 , wR_2 (all data)	0.0291, 0.0767	0.1018, 0.1986	0.0358, 0.0645	0.1673, 0.2381	0.0309, 0.0787	0.1384, 0.2095	
Goodness of fit	1.145	1.089	1.032	1.046	1.077	1.066	
Largest diff peak and hole [e/Å ³]	1.10 and -0.79	2.56 and -2.13	1.22 and -1.03	2.91 and -2.12	0.40 and -0.38	1.88 and -0.60	

Table S2. The structures of the three independent molecules in $3\cdot 2/3$ MeCN and their selected bond lengths [Å] and angles [deg].

Figure S1. The structure of asymmetric unit of 5.

Figure S2. Molecular structure of **5** (the H atoms are omitted for clarity). Selected bond lengths [Å]: Cu(1A)–Cu(1B) 2.7444(19), Cu(1A)–I(1A) 2.5828(17), Cu(1A)–I(1B) 2.6573(18), Cu(1B)–I(1A) 2.6784(18), Cu(1B)–I(1B) 2.5660(17), Cu(1A)–N(1A) 2.090(10), Cu(1A)–N(2A) 2.097(11), Cu(1B)–N(2B) 2.079(10), Cu(1B)–N(1B) 2.088(11), P(1A)–O(1A) 1.490(8), P(1B)–O(1B) 1.481(9).

FT-IR spectra of 1-8

Figure S3. FT-IR spectrum of $\{Cu_2I_2[Py_2(Me)P=O]_2\}$ (1) (*top*) and comparison (*bottom*) of experimental (black line) FT-IR spectrum of $\{Cu_2I_2[Py_2(Me)P=O]_2\}$ (1) and theoretical IR spectra for 1-C_i (red line) and 1-C₂ (blue dashed line). Calculated spectra are scaled by 0.97 factor.

Figure S4. FT-IR spectrum of {Cu₂I₂[Py₂(Et)P=O]₂} (2).

Figure S5. FT-IR spectrum of {Cu₂I₂[Py₂(*n*-C₉H₁₉)P=O]₂} (3).

Figure S6. FT-IR spectrum of {Cu₂I₂[Py₂(PhCH₂)P=O]₂} (4).

Figure S7. FT-IR spectrum of {Cu₂I₂[Py₂(1-NpCH₂)P=O]₂} (5).

Figure S8. FT-IR spectrum of {Cu₂(SCN)₂[Py₂(Me)P=O]₂} (6).

Figure S9. FT-IR spectrum of {Cu₂(SCN)₂[Py₂(Bu)P=O]₂} (7).

Figure S10. FT-IR spectrum of {Cu₂(SCN)₂[Py₂(PhCH₂)P=O]₂} (8)

ESI-MS spectra of 1, 3 and 5

Figure S11. ESI-Mass spectra of 1 in positive- (*a*) and negative-ion (*b*) modes (MeCN).

Figure S12. ESI-Mass spectra of 3 in positive- (*a*) and negative-ion (*b*) modes (MeCN).

Figure S13. ESI-Mass spectra of 5 in positive- (*a*) and negative-ion (*b*) modes (MeCN).

V.T. ³¹P NMR spectra of 5

Figure S14. ${}^{31}P{}^{1}H$ NMR spectra of 5 measured at 23 and -60 °C in CDCl₃ solution.

Photophysical data

Figure S15. Photographs of the powder 1 under ambient light (*left*) and UV-light (*right*).

Figure S16. Excitation (at 300 K) and emission spectra (λ_{ex} = 400 nm) of **1** in the solid state at 77 and 300 K.

Figure S17. Excitation (at 300 K) and emission spectra (λ_{ex} = 470 nm) of **2** in the solid state at 77 and 300 K.

Figure S18. Excitation (at 300 K) and emission spectra (λ_{ex} = 450 nm) of **3** in the solid state at 77 and 300 K.

Figure S19. Excitation (at 300 K) and emission spectra (λ_{ex} = 450 nm) of **4** in the solid state at 77 and 300 K.

Figure S20. Excitation (at 300 K) and emission spectra (λ_{ex} = 450 nm) of **5** in the solid state at 77 and 300 K.

Figure S21. Excitation (at 300 K) and emission spectra (λ_{ex} = 400 nm) of **6** in the solid state at 77 and 300 K.

Figure S22. Excitation (at 300 K) and emission spectra (λ_{ex} = 480 nm) of **7** in the solid state at 77 and 300 K.

Figure S23. Excitation (at 300 K) and emission spectra (λ_{ex} = 450 nm) of **8** in the solid state at 77 and 300 K.

Figure S24. Emission decays for complex **1** in the solid state at 77 K and 300 K (λ_{em} = 560 nm, λ_{ex} = 355 nm).

Figure S25. Emission decays for complex **2** in the solid state at 300 K (λ_{em} = 575 nm, λ_{ex} = 470 nm).

Figure S26. Emission decays for complex **3** in the solid state at 300 K (λ_{em} = 537 nm, λ_{ex} = 450 nm).

Figure S27. Emission decays for complex **4** in the solid state at 300 K (λ_{em} = 536 nm, λ_{ex} = 450 nm).

Figure S28. Emission decays for complex **5** in the solid state at 300 K (λ_{em} = 536 nm, λ_{ex} = 450 nm).

Figure S29. Emission decays for complex **6** in the solid state at 77 K and 300 K (λ_{em} = 580 nm, λ_{ex} = 355 nm).

Figure S30. Emission decays for complex **7** in the solid state at 300 K (λ_{em} = 560 nm, λ_{ex} = 480 nm).

Figure S31. Emission decays for complex **8** in the solid state at 300 K (λ_{em} = 592 nm, λ_{ex} = 450 nm).

Figure S32. Absorption, excitation and emission (λ_{ex} = 400 mn) spectra of **6**. The absorption spectrum is recorded for a MeCN solution, while excitation and emission spectra are given for a powder of **6**.

Figure S33. Absorption spectra of 3 (*a*), 4 (*b*) and 5 (*c*) measured for MeCN solution.

Figure S34. The solid-state UV–Vis absorption spectra of 1 (*left*) and 6 (*right*).

Figure S35. Comparison of excitation and solid-state UV–Vis absorption spectra for 1 (*left*) and 6 (*right*).

Computation details

HOMO-1 -4.928 eV

Figure S37. Near Fermi level molecular orbitals for S_0 state of complex 6.

Figure S38. ELF map for S₀ state of complex 6.

Table S3. Selected optimized and experimental geometrical parameters for complex **6** and calculated energetic parameters for its different states. E (kcal/mol) is formation energy, ΔE (kcal/mol) is energy difference between ground state (S₀) and exited states (S₁ and T₁), D_{Cu-Cu} (Å), D_{Cu-N} (Å), D_{Cu-S} (Å) and D_{C-N} (Å) are Cu–Cu, Cu–N, Cu–S and C–N distances, α (°) is N–Cu–S angle.

Structure	E	ΔE	D _{Cu-Cu}	D _{Cu-N}	D _{Cu-S}	D _{C-N}	α N-Cu-S
6 S ₀	-10208.46	0	5.026	1.932	2.394	1.165	109.4
6 S ₁	-10166.17	42.29	5.267	1.929	2.403	1.163	99.1
6 T ₁	-10166.41	42.05	5.189	1.928	2.402	1.164	100.5
X-ray structure 6 (Fig. 4)	n/a	n/a	5.103	1.952	2.391	1.148	105.7

TGA/DTA curves for 1 and 6

Figure S39. The TGA/DTA curves for 1.

Figure S40. The TGA/DTA curves for 6.