Supporting Information

Ethylene glycol-mediated rapid synthesis of carbon-coated ZnFe$_2$O$_4$ nanoflakes with long-term and high-rate performance for lithium-ion batteries

Guoxin Gao,‡a,* Lei Shi,‡a Shiyao Lu,a Ting Gao,b Zhaoyang Li,a Yiyang Gao,a Shujiang Ding a,c,*

a. Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
b. Chengdu Galaxy Power Co., LTD, Chengdu 610505, P. R. China.
c. School of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China.

‡ These authors contributed to this work equally.

*Corresponding authors: gaoguoxin@mail.xjtu.edu.cn (G. X. Gao)
dingsj@mail.xjtu.edu.cn (S. J. Ding),

Figure S1. XRD pattern (A) and FT-IR spectra (B) of as-prepared ZnFe alkoxide precursor.
Figure S2. EDX spectra of as-prepared ZnFe$_2$O$_4$@C NFs, Inserted FESEM image shows the scan area.

Figure S3. N$_2$ adsorption-desorption isotherm of the as-prepared ZnFe$_2$O$_4$@C NFs. The inserted plots exhibit the pore size distribution curve according to BJH method.
Figure S4. Raman spectra of as-prepared ZnFe$_2$O$_4$@C NFs.

Figure S5. TGA profile of as-prepared ZnFe$_2$O$_4$@C NFs in air between 100 and 600 °C with a heating rate of 10 °C min$^{-1}$.
Figure S6. Discharge/charge voltage curves of as-prepared ZnFe$_2$O$_4$@C NFs at different current densities in the voltage window of 0.01 and 3.0 V.

Figure S7. (A) Nyquist plots and (B) equivalent circuit of as-prepared ZnFe$_2$O$_4$@C NF electrodes measured with an amplitude of 5.0 mV over the frequency range of 100 kHz and 0.01 Hz by applying a sine wave.
Figure S8. Post-mortem FESEM images of ZnFe$_2$O$_4$@C NFs after 1000 cycles at 0.5 A g$^{-1}$.