Supplementary Information

Destruction of chemical warfare agent simulants by air and moisture stable metal NHC complexes

C. Weetman,^a S. Notman,^b P. L. Arnold^{*a}

^a EaStCHEM School of Chemistry, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FJ, U.K.

^b Defence Science Technology Laboratory (DSTL), Porton Down, Salisbury, SP4 0JQ, Wilts, U.K.

Contents

1.	General Experimental Procedures:	1
2.	Destruction by Group 11 metal-NHC complexes	1
3.	Destruction by vanadium-NHC complexes	9
4.	Destruction by complexes of tethered-NHCs	18
5.	Catalytic CWA destruction	21
6.	References	26

1. General Experimental Procedures:

NMR spectra were recorded on a Bruker AVA400 spectrometer for ¹H (399.90 MHz), ³¹P (161.98 MHz) and a Bruker AVA600 spectrometer ¹H (599.81 MHz).

Gas Chromatography Mass Spectrometry (GCMS) data was collected on a Shimadzu GC-2010 plus with a 30 m, 0.25 mmID, 0.25 μ m df column.

Photolysis was carried out using a Pen-Ray Light Source 11SC-1.75 - 254 nm, Effective 2200 $\mu W/cm^2$ @1" and 18 mA, Maximum 6W.

UV/vis spectra were recorded on a JASCO V-670 spectrophotometer.

Synthesis of all complexes (1-5)-Ag¹, 6-Ag², (1-5)-Cu³, and (1-3)-V^{4, 5} were carried out according to literature preparations. Imidazoline and Imidazolinium salts were purchased from Sigma-Aldrich and used as supplied, *o*-aryloxide imidazoline salt⁶ was prepared according to literature. All chemicals were purchased from Sigma-Aldrich and used as supplied without further purification. Deuterated solvents were purchased from Cambridge Isotopes. Extreme caution must be taken when handling the chemical warfare simulants.

2. Destruction by Group 11 metal-NHC complexes

General experimental procedure:

CEES (2.0 μ L, 0.017 mmol) was added to a quartz NMR tube containing 0.5 mL CDCl₃ and **#-Ag** or **#-Cu** (0.017 mmol). A ¹H NMR was taken after addition and then placed under UV light (254 nm) and monitored every 30 minutes until CEES had been consumed. A small aliquot was taken every hour for GC-MS.

Figure 1. 1-Ag and 1 eq CEES, UV (254 nm) 5hr

Figure 2. 1H-1H COSY NMR for reaction of 1-Ag with CEES

Figure 3. 1H-13C HSQC NMR for reaction of 1-Ag with CEES

Figure 4. 1H-13C HMBC NMR for reaction of 1-Ag with CEES

Figure 5. DOSY NMR for reaction of 1-Ag and CEES

Figure 7. 1H NMR stack plot 30 minute intervals, 1-Ag + CEES

Figure 8. 1H NMR stack plot 30 minute intervals, 2-Ag + CEES

Figure 9. 1H NMR stack plot 30 minute intervals, 3-Ag + CEES

Figure 10. 1H NMR stack plot 30 minute intervals, 4-Ag + CEES

Figure 11. 1H NMR stack plot 30 minute intervals, 5-Ag + CEES

Figure 12. Stacked ¹H NMR spectra (top spectra – 1-Cu + CEES after addition; bottom spectra – after 5 hrs UV 254nm)

Figure 13. GC-MS trace of 1-Cu + CEES, after 5hrs UV (254 nm)

3. Destruction by vanadium-NHC complexes

General experimental procedure:

CEES (2.0 μ L, 0.017 mmol) was added to a quartz NMR tube containing 0.5 mL CDCl₃ and #-Ag (0.017 mmol). A ¹H NMR was taken after addition and then placed under UV light (254 nm) and monitored every 30 minutes until CEES had been consumed. A small aliquot was taken every hour for GC-MS.

Paraoxon-ethyl (8.8 μ mol) or Profenofos (8.8 μ mol) was added to a quartz NMR tube containing 0.5 mL of **#-V** (8.8 μ mol). ¹H, ³¹P and ⁵¹V NMR were taken after addition, and then placed under UV light (254 nm) and monitored at regular intervals using GC-MS.

On one occasion, crystals of a vanadium-containing decomposition product were isolated from a chloroform reaction mixture of IMesVOCl₃ and a stoichiometric amount of Paraoxon-ethyl after photolysis. The crystals were isolated in approx. 15% yield, and characterised by single crystal X-ray diffraction as the 1-D polymer of $(VO_2Cl_2PO_2)_n$.

Figure 14. ¹H NMR of 1-V + CEES after 3 hours exposure to UV light (254 nm)

PEAK	R. TIME	I. TIME	F. TIME	AREA	AREA %	HEIGHT	HEIGHT %	A/H	NAME
1	4.326	4.270	4.400	316214	17.48	96633	13.99	3.27	Toluene
2	5.538	5.365	5.690	32243	1.78	9894	1.43	3.26	Tetrachloroethylene
3	5.903	5.755	6.015	45847	2.53	15446	2.24	2.97	Butane, 2,3-dichloro-2-methyl-
4	9.507	9.460	9.570	173293	9.58	63395	9.18	2.73	2-Chloroethyl ethyl sulfide
5	12.374	12.285	12.510	12101	0.67	8430	1.22	1.44	2-Chloroethyl ethyl disulfide
6	14.326	14.270	14.410	1229014	67.96	496811	71.94	2.47	Hexachloroethane

Figure 15. GC-MS trace 2-V and CEES (3 hours)

Figure 16. Selected MS peaks from GC-MS trace (upper found, lower predicted structure)

PEAK	R. TIME	I. TIME	F. TIME	AREA	%	HEIGHT	%	A/H	NAME
1	4.325	4.270	4.405	328925	13.34	98065	10.39	3.35	Toluene
2	5.892	5.755	6.080	82512	3.35	16355	1.73	5.05	Butane, 2,3-dichloro-2-methyl-
3	9.515	9.395	9.720	114381	4.64	21791	2.31	5.25	2-Chloroethyl ethyl sulfide
4	12.355	12.320	12.390	60614	2.46	29177	3.09	2.08	2-Chloroethyl ethyl disulfide
5	14.321	14.270	14.390	1879240	76.21	778216	82.48	2.41	Ethane, hexachloro-

Figure 17. GC-MS trace of 2-V and CEES (5 hours)

PEAK	R. TIME	I. TIME	F. TIME	AREA	AREA %	HEIGHT	HEIGHT %	A/H	NAME
1	4.100	4.045	4.125	25965	1.93	12116	2.28	2.14	Methane-d, trichloro-
2	4.334	4.290	4.395	201162	14.95	67298	12.68	2.99	Toluene
3	12.375	12.160	12.545	71531	5.32	20324	3.83	3.52	2-Chloroethyl ethyl disulfide
4	14.332	14.280	14.405	1047027	77.80	431042	81.21	2.43	Ethane, hexachloro-

Figure 18. GC-MS trace of 2-V and CEES (6 hours)

PEAK	R. TIME	I. TIME	F. TIME	AREA	AREA %	HEIGHT	HEIGHT %	A/H	NAME
1	9.285	9.200	9.385	44861	2.64	16203	2.76	2.77	Diethyl disulfide
2	9.487	9.410	9.685	537544	31.58	175148	29.80	3.07	2-Chloroethyl ethyl sulfide
3	10.871	10.735	11.045	1119935	65.78	396390	67.44	2.83	Mesitylene

Figure 19. GC-MS trace of 2-V and CEES in C6D6

Figure 20. Selected MS peaks from GC-MS trace (Top found, bottom predicted)

Chlorination of CEES - proposed mechanism via chloride radical for both solvents

Initial CI attack to form tri, tet & hexachloride species - chlorination is fast through to hexachloroethane

hexachloridesulphide reacts further to form hexachloroethane and ethyl hypochlorothioite

Chlorination of CEES - proposed mechanism in Chloroform

Excess chloride radicals in solution increase chances of attack on ethyl group leading to initial formation of mustard gas which rapidly undergoes attack via a second chloride radical and so on.

Combination of 2 products

Benzene

Figure 21. Proposed mechanism for chloride radical destruction of CEES

Figure 22. 2-V and Profenofos (3.5hr)

PEAK	R. TIME	I. TIME	F. TIME	AREA	AREA %	HEIGHT	HEIGHT %	A/H	NAME
1	4.293	4.160	4.455	1056900	71.02	330590	87.58	3.20	Toluene
2	10.256	10.140	10.365	45803	3.08	25607	6.78	1.79	Benzene, 1-chloro-2-methyl-
3	20.294	19.985	20.765	385507	25.90	21276	5.64	18.12	Phenol, 4-bromo-2-chloro-

DEAK	R.		F.		AREA	AREA		۸ / LI	
PEAK	TIME	I. IIIVIE	TIME	AREA	%	HEIGHT	%	АЛ	NAME
1	4.295	4.230	4.385	3228512	71.26	1046364	69.41	3.09	Toluene
2	5.284	5.260	5.345	286610	6.33	120086	7.97	2.39	1,1-Dimethyl-3-chloropropanol
3	5.394	5.345	5.475	355732	7.85	129616	8.60	2.74	2-Pentanol, 4-methyl-
4	17.235	16.845	17.515	175106	3.87	11279	0.75	15.52	Phenol, 4-bromo-2-chloro-
5	19.779	19.695	19.945	47741	1.05	21551	1.43	2.22	Benzene, 2-isocyanato-1,3-bis(1-methylethyl)-
6	20.450	20.415	20.490	137160	3.03	72201	4.79	1.90	Benzene, 2-isocyanato-1,3-bis(1-methylethyl)-
7	31.453	31.410	31.525	299509	6.61	106271	7.05	2.82	Profenofos

Figure 23. GC-MS trace of 1-V + Profenofos (4 hr)

Figure 24. Selected MS peaks from GC-MS trace (Top found, bottom predicted)

Figure 25. ORTEP representation of a section of the 1-D polymer of $(VO_2Cl_2PO_2)_n$; isolated in low yield from a nerve-agent simulant destruction reaction. Thermal ellipsoids drawn at the 50% probability level. Sodium counter ion omitted for clarity.

Complex	(VO ₂ Cl ₂ PO ₂) _n
Local code	p16148a_mono
Chemical formula	ClO _{2.5} P _{0.5} V _{0.5} ·Na
M _r	139.40
Crystal system, space group	Monoclinic, I2/m
Temperature (K)	170
a, b, c (Å)	7.3580 (6), 6.3903 (6), 15.2247 (16)
α, β, γ (°)	90.318 (9)
V (ų)	715.85 (12)
Ζ	8
Radiation type	Mo Ka

Table S1. Crystallographic data summary for 1D polymer (VO₂Cl₂PO₂)

μ (mm ⁻¹)	2.44
Crystal size (mm)	$0.16 \times 0.07 \times 0.04$
Diffractometer	Xcalibur, Eos
Absorption correction	Multi-scan
T _{min} , T _{max}	0.859, 0.953
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	5177, 675, 566
R _{int}	0.057
(sin θ/λ) _{max} (Å ⁻¹)	0.588
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.098, 0.263, 1.13
No. of reflections	675
No. of parameters	51
$\Delta \rho_{\text{max}}$, $\Delta \rho_{\text{min}}$ (e Å-3)	1.53, -1.72
CCDC number	1580495

4. Destruction by complexes of tethered-NHCs

CEES (2.8 μ L, 0.024 mmol) was added to a NMR tube containing 0.5 mL CDCl₃ and **6-M** (0.024 mmol). A ¹H NMR was taken after addition and then placed in a pre-heated oil bath to 80 °C and monitored at regular intervals using ¹H NMR and GC-MS spectroscopy.

Paraoxon-ethyl (2.6 μ L, 12 μ mol) or Profenofos (3.0 μ L, 12 μ mol) were added to a NMR tube containing 0.5 mL of CDCl₃ with **6-M** (12 μ mol). ¹H, ³¹P were taken after addition, and then placed in a pre-heated oil bath to 80 °C and monitored at regular intervals using ¹H, ³¹P and GC-MS.

Figure 26. 1H NMR stack plot for reaction of 6-Ag and CEES

Figure 27. Graph showing destruction of CEES with 6-K (orange) and 6-K with an additional 2 equivalents of KOtBu

Figure 28. 31P NMR spectrum of 6-Ag and Paraoxon after 19 hrs at 80 °C

Figure 29. 31P NMR spectrum of 6-Ag and Profenofos after 19 hrs at 80 °C

5. Catalytic CWA destruction

Figure 30. 5 mol% IMes.HCl, 5 mol% NiCl_2, 20 mol% KOtBu and CEES over 48 hr period at 80 $^\circ C$ in MeCN

Figure 31. 5 mol% IMes.HCl, 5 mol% FeBr₂, 20 mol% KOtBu and CEES over 48 hr period at 80 °C in MeCN

Figure 32. 5 mol% IMes.HCl, 5 mol% FeCl₃, 20 mol% KOtBu and CEES over 48 hr period at 80 $^\circ C$ in MeCN

Figure 33. 5 mol% ICy.HCl, 5 mol% NiCl₂, 20 mol% KOtBu and CEES over 48 hr period at 80 $^\circ\text{C}$ in MeCN

Figure 34. 5 mol% ICy.HCl, 5 mol% FeBr₂, 20 mol% KOtBu and CEES over 48 hr period at 80 $^\circ C$ in MeCN

Figure 35. 5 mol% ICy.HCl, 5 mol% FeCl₃, 20 mol% KOtBu and CEES over 48 hr period at 80 $^\circ C$ in MeCN

Figure 36. 5 mol% IMes.HCl, 5 mol% FeCl₂, 20 mol% KOtBu and Profenofos over 24 hr period at 80 °C in MeCN

Figure 37. 5 mol% IMes.HCl, 5 mol% FeCl₃, 20 mol% KOtBu and Profenofos over 24 hr period at 80 ∘C in MeCN

Figure 38. GC-MS trace of 5 mol% IMes.HCl, 5 mol% FeCl₃, 20 mol% KOtBu and Profenofos after 24 hrs at 80 \circ C in MeCN

Figure 39. GC-MS trace of 5 mol% IPr.HCl, 5 mol% FeCl₃, 20 mol% KOtBu and Profenofos after 24 hrs at 80 °C in MeCN

Figure 40. Selected MS peaks from GC-MS trace (Top found, bottom predicted)

Figure 41. 31P NMR after 24 hrs of 5 mol% ICy.HCl, 5 mol% NiCl₂, 20 mol% KOtBu and Paraoxon at 80 °C in d-MeCN

6. References

- P. de Fremont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody, C. L. B. Macdonald, J. A.
 C. Clyburne, C. D. Abernethy and S. P. Nolan, *Organometallics*, 2005, **24**, 6301-6309.
- 2. D. D. Yang, Y. G. Tang, H. B. Song and B. Q. Wang, *Organometallics*, 2015, **34**, 2012-2017.
- 3. F. Lazreg, D. B. Cordes, A. M. Z. Slawin and C. S. J. Cazin, *Organometallics*, 2015, **34**, 419-425.
- 4. C. D. Abernethy, G. M. Codd, M. D. Spicer and M. K. Taylor, *Journal of the American Chemical Society*, 2003, **125**, 1128-1129.
- 5. S. Zhang, W. C. Zhang, D. D. Shang, Z. Q. Zhang and Y. X. Wu, *Dalton Transactions*, 2015, **44**, 15264-15270.
- H. P. Ren, P. Y. Yao, S. S. Xu, H. B. Song and B. Q. Wang, *Journal of Organometallic Chemistry*, 2007, 692, 2092-2098.