Electronic Supplementary Information

Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors

Li-Feng Chen, Yan Lu, Le Yu,* and Xiong Wen (David) Lou*

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.

E-mail: yule0001@e.ntu.edu.sg; xwlou@ntu.edu.sg; davidlou88@gmail.com;

Webpage: http://www.ntu.edu.sg/home/xwlou/

Fig. S1 FESEM characterizations of the PAN nanofibers without the addition of ZIF-8 particles.

Fig. S2 XRD patterns of the ZIF-8 particles and PAN/ZIF-8 nanofibers.

Fig. S3 Representative photographs showing the flexibility of the HPCNFs-N sample.

Fig. S4 FESEM characterizations. FESEM images of (a,b) ZIF-8 nanoparticles and (c,d) the resultant N-doped carbon (C-N) after carbonization process.

Fig. S5 FESEM characterizations. The cross-section FESEM images of (a) HPCNFs-N-800, (b) HPCNFs-N and (c) HPCNFs-N-1000.

Fig. S6 FESEM and TEM characterizations of HPCNFs-N-800.

Fig. S7 FESEM and TEM characterizations of HPCNFs-N-1000.

Fig. S8 (a) XPS survey spectra of HPCNFs-N and the control samples. High resolution spectra of N 1s for (b) HPCNFs-N-800 and (c) HPCNFs-N-1000.

Fig. S9 N₂ adsorption/desorption isotherms and the corresponding pore-size-distribution curve of HPCNFs-N.

Fig. S10 N₂ adsorption/desorption isotherms and the corresponding pore-size-distribution curves of the control samples. (a) HPCNFs-N-800, (b) HPCNFs-N-1000, (c) C-N and (d) N-CNFs.

Fig. S11 Two-electrode system for measuring supercapacitive performance. (a) Schematic diagram of the two-electrode configuration. (b) Photograph of a supercapacitor with as-synthesized samples as the electrodes.

Fig. S12 (a) CV curves at different scan rates, (b) galvanostatic charge-discharge curves at different current densities and (c) *IR* drop at different current densities of HPCNFs-N. (d) CV curves of different samples at a current density of 10.0 mV s⁻¹. Galvanostatic charge-discharge curves at different current densities of (e) HPCNFs-N-800 and (f) HPCNFs-N-1000.

Fig. S13 Supercapacitive performance of C-N. (a) CV curve at the scan rate of 10.0 mV s⁻¹. (b) Galvanostatic charge-discharge curves at different current densities.

Fig. S14 CV curve of N-CNFs at the scan rate of 10.0 mV s^{-1} .

Fig. S15 Ragone plots of HPCNFs-N, the control samples and other carbon-based devices.

Fig. S16 The Coulombic efficiency of HPCNFs-N during the cycling test at a current density of 5.0 A g⁻¹.

Fig. S17 FESEM and TEM characterizations of the HPCNFs-N electrode after 10000 discharge/charge cycles at 5.0 A g^{-1} .

Sample	$S_{\rm BET}(m^2~{ m g}^{-1})^{a)}$	$V_{\rm T}~({\rm cm}^3~{\rm g}^{-1})$ b)
HPCNFs-N	417.9	0.68
HPCNFs-N-800	443.5	1.60
HPCNFs-N-1000	380.6	1.97
C-N	223.1	0.38
N-CNFs	8.7	0.01

 Table S1. Pore parameters of HPCNFs-N and the control samples.

^{a)} S_{BET} : Calculated specific surface area; ^{b)} V_{T} : pore volume.

Carbon-based electrodes	Specific capacitance (F g ⁻¹)	Energy density (Wh kg ⁻¹)	Power density (kW kg ⁻¹)	Ref.
HPCNFs-N	307.2 (1 A g ⁻¹)	10.96	25	This work
N,P-co-doped CNFs	204.9 (1 A g ⁻¹)	7.76	26.61	15
Heteroatom-doped carbon	~265 (1 A g ⁻¹)	Not reported	Not reported	19
N-doped carbon@graphitic carbon	270 (1 A g ⁻¹)	Not reported	Not reported	34
Porous N-doped carbon	$\sim 200 \ (0.25 \ \text{A g}^{-1})$	Not reported	Not reported	35
Two-dimensional CoS1.097/N-doped carbon nanocomposites	360.1 (1.5 A g ⁻¹)	Not reported	Not reported	36
N-doped activated carbons	185 (0.4 A g ⁻¹)	Not reported	Not reported	37
Hierarchical N-doped carbon nanocages	313 (1 A g ⁻¹)	10.90	22.22	38
N-enriched porous carbon spheres	388 (1 A g ⁻¹)	Not reported	Not reported	39
Cross-linked N-doped CNF network	~200 (1 A g ⁻¹)	5.9	10	40
N-doped hierarchical CNFs	332 (1 A g ⁻¹)	Not reported	Not reported	41
Pine needle-derived N-doped carbon frameworks	236 (1 A g ⁻¹)	8.2	2.0	42
Hydrophilic N-doped carbon foams	52 (1 mA cm ⁻²)	Not reported	Not reported	43

Table S2. Comparison of electrochemical performance of HPCNFs-N with some representative carbon-based electrodes for supercapacitors.