Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Can CO₂ enhanced oil recovery catalyze gigatonne carbon capture and storage deployment?

Clea Kolster,
 $^{a,b,c},$ Mohammad S. Masnadi, d' Sam Krevor,
 e Niall Mac Dowell b,c and Adam R. Brandt
 *d

S1 MIICE MATLAB code

MIICE MATLAB script is attached.

S2 Model scoping and assumptions

S1 Model envelope

Figure S1: Conceptual representation of the $CCS + CO_2$ -EOR model envelope (dotted line box) without considering physical flow streams

^{*} Corresponding Author E-mail: abrandt@stanford.edu

^a Grantham Institute for Climate Change and the Environment, Imperial College London, SW7 2AZ, UK

^b Centre for Environmental Policy, Imperial College London, SW7 1NA, UK

 $^{^{\}rm c}$ Centre for Process Systems Engineering, Imperial College London, SW7 2AZ, UK

^d Department of Energy Resources Engineering, School of Earth, Energy & Environmental Sciences, Stanford University, CA, 94305, USA

^e Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, UK

S2 CCS and CO_2 enhanced oil recovery field development and cost modeling

S2.1 CO $_2$ capture cost in literature and model-based assumptions

Table S1: Real-time and literature-based capital cost values of a mine-based $\rm CO_2$ post-combustion capture plants coupled with supercritical pulverized coal fired plants adjusted to 1 MtCO₂ captured per year

Reference Source	Capital Cost Value (2016	Information & Assumptions
	US_{MtCO_2} captured)	
Boundary Dam CCS [S1]	\$1.5 billion	Successfully deployed project, over-budget
Petra Nova Parish CCS [S2–S5]	\$714 million	Successfully deployed project, on-budget
Rubin et al. Study [S6]	\$326 million	Literature based study for new build power plants with CCS
Adjusted SRCCS study [S6]	\$270 million	Literature based study conducted in 2005 [S7] for a new build power plant + CCS
Worley Parsons Report [S8]	\$209 million	Literature based study for a new build power plant + CCS $$

Table S2: Operating costs for CO_2 capture as reported by Worley Parsons and adjusted to a $MtCO_2$ basis - all cost values adjusted to 2016 US\$.

Parameter	Worley Parsons Report	Adjusted Calculations for this	
		Study	
Type of power plant considered	Pulverized coal firing	idem	
Type of capture technology	Post-combustion amine	idem	
	scrubbing		
Net Power Output	$546 \mathrm{MW}$	approx. 110 MW	
Capture rate	90%	90%	
CO_2 Captured	$4.98 \mathrm{Mt/year}$	$1 { m Mt/year}$	
Power associated with capture	87 MW	$17.5 \ \mathrm{MW}$	
plant			
Cost of electricity consumed	30.25 million/year	6.07 million/year	
Variable O&M	4.53 million/MWh	0.69 million/year	
Fixed O&M	\$11.41 million	\$2.29 million	

S2.2 CO_2 transport costs

Cost type	Function of	$1 MtCO_2/year$ 2 - $3 MtCO_2/year$		$> 3 MtCO_2/year$
	Pipeline Co	pital Costs		
Materials	Diameter (D) &	7.223 M\$	11.115 M\$	15.377 M\$
	Length (L)			
Labor	D & L	28.209 M\$	32.976 M\$	36.672 M\$
Miscellaneous	D& L	7.825 M\$	11.287 M	13.815 M\$
Right of Way	D& L	2.976 M\$	3.172 M\$	3.1547 M\$
CO_2 surge tank	Fixed	1.332 M\$	idem	idem
Pipeline control	Fixed	$0.120 \ M\$$	idem	idem
system				
Total Capital Costs		47.686 M\$	60.003 M	75.567 M\$
	Pipeline Ope	rating Costs		
Operating &	L	0.561 M\$	idem	idem
Maintenance				
Total Operating		0.561 Myear	idem	idem
Costs		, <u>-</u>		

Table S3: Capital and operating costs for transport pipelines from source to sink required for projects of 1- $4MtCO_2$ /year capture rates (M\$ = \$ million)

S2.3 EOR field model development and assumptions

Equation S1 is used to calculate the minimum miscibility pressure (MMP) required for CO_2 to be miscible with oil at injection. This is based on characteristic assumptions presented in Table S4.

$$MMP = 15.988 \times T(0.744206 + 0.0011038 \times MWC5)$$
(S1)

with

MMP: minimum miscibility pressure (psi)

T: reservoir temperature (Farenheit)

MWC5: molecular weight of pentanes & heavier fractions of oil

Table S4: Reservoir characteristics assumed and calculated in order to obtain fluid properties

Parameter	Value	Unit	Reference
Median reservoir depth	2026	m	[S9]
Pressure gradient	10.52	$\mathrm{kPa/m}$	$[\mathbf{S10}]$
Temperature gradient	30	$^{\circ}\mathrm{C/km}$	[S11]
Surface temperature	15	$^{\circ}\mathrm{C}$	Assumption of study
Reservoir pressure (P)	21.3	MPa	Calculated
Reservoir temperature (T)	75.8	$^{\circ}\mathrm{C}$	Calculated
CO_2 density at reservoir P & T	614.08	$ m kg/m^3$	[S12]
CO_2 viscosity at reservoir P& T	47.8	$\operatorname{microPa.s}$	[S12]
CO_2 fluid phase	Supercritical		[S12]
Average reservoir oil gravity	37	API	[S9]
$\mathrm{MWC5}+$	183.67	m g/mol	[S13]
Average MMP	17.6	MPa	Calculated
Formation volume factor	1.3	m^3/m^3	Assumption of study

Figure S2: Distributions of reservoir characteristics including depth (m), porosity (%), permeability (mD) and field area (m²) for oil fields with CO₂-EOR activity in the U.S. as well as Prudhoe Bay hydrocarbon miscible injection field based on Oil & Gas Journal 2014 Survey data.

S2.4 CO₂-EOR pattern deployment strategy description

Figure S3: Flow diagram describing the decision strategy process for CO_2 -EOR pattern deployment within a field k.

S2.5 EOR production profile fit parameters

Table S5: Parameters of logistic and exponential equations of curve fits for production profiles of oil and CO₂ as a percentage of OOIP and HCPV respectively

Oil production fit	d	a	b	с	RMSE/R-Square
Low	0.0	0.105	9.813	0.4213	0.001414/0.9977
Medium	0.01	0.1774	4.86	0.447	0.002853/0.9954
High	0.09	0.3818	3.449	0.3415	
CO_2 production fit	d'	a'	b'	c'	RMSE/R-Square
Low	0.33	0.3155	0.8515	0.1492	0.01481/0.9751
Medium	0.4	0.6357	0.9292	0.5785	0.009409/0.997
High	0.4792	1.276	0.9086	1.078	

S3 Cost inflation factors

Table S6: Inflation factors used to convert US\$ costs from literature to constant 2016 US\$ based on the Bureau of Labor Statistics Consumer Price Index inflation calculator[S14].

Year of cost reported	Inflation factor to 2016 US\$
2004	1.270
2010	1.100
2013	1.030
2014	1.017

S4 Compound annual growth rates

A compound annual growth rate (CAGR) is used to compare results of cumulative CCS capacity deployed by 2050 and cumulative oil production rates to both industries' growth rate predictions. The CAGR describes a rate at which an industry would need to grow by every year, if this were at a steady rate, to achieve a final industry objective size. These rates are calculated against values of oil production from CO_2 -EOR in the US, which was at 156.95 MMbbl/year in 2015 [S15] and the global value for CO_2 captured in 2016 of 27 MtCO₂/year [S16].

S5 Slow and fast industry growth scenarios

In a slow deployment scenario, we assume that the 5-year demonstration period is followed by a growth to materiality of 20% per year (lower than the exponential growth assumed), followed by a stagnated growth of 3% per year based on a low carbon technology study by Napp et al. [S17]. Meanwhile, a much faster industry growth scenario considers that the first 5 years of project initiation has an upper bound of 2^{year} project investments. In the 10 years that follow, the number of projects that can be built is limited by a 40% growth rate year on year. The 10 years that follow see a slower allowable growth rate as momentum is reduced to a 20% growth rate and the 10 years that follow are limited by a 10% yearly growth rate.

S3 Results

- S1 Five world scenarios
- S1.1 Cumulative CO_2 stored and oil produced

Figure S4: Graph showing cumulative CO_2 stored and oil produced as a result of successful projects obtained in each of the Five World Scenarios

S1.2 Average field characteristics of successful projects

Figure S5: Bar chart showing the total average field characteristics for all successful projects resulting from each of the five world scenarios from the pool of 1000 fields

S2 Heat maps showing sensitivity of CO_2 storage and oil production to 2-D variation in CO_2 tax, oil price, technological learning and initial capital cost of capture

Figure S6: Heat maps showing contours of CO_2 storage achieved for all invested CCS with CO_2 -EOR projects by 2050 as a function of (a) the CO_2 tax achieved by 2050 and the price of oil, (b) the CO_2 tax in 2016 and the amount of technological learning assumed, (c) the price of oil and the initial capital cost of capture assumed per MtCO₂ capture capacity in 2016, and (d) the price of oil and the initial capital cost of capture assumed per MtCO₂ capture capacity in 2016.

Figure S7: Heat maps showing contours of oil production for all invested CCS with CO₂-EOR projects by 2050 as a function of (a) the CO₂ tax achieved by 2050 and the price of oil, (b) the CO₂ tax in 2016 and the amount of technological learning assumed, (c) the price of oil and the initial capital cost of capture assumed per MtCO₂ capture capacity in 2016, and (d) the price of oil and the initial capital cost of capture assumed per MtCO₂ capture capacity in 2016.

References

- Carbon Capture & Sequestration Technologies at MIT. Boundary Dam Fact Sheet: Carbon Dioxide Capture and Storage Project. https://sequestration.mit.edu/tools/projects/ boundary_dam.html. Accessed on January 18, 2017.
- [2] NRG. News Release: NRG Energy, JX Nippon Complete World's Largest Post-Combustion Carbon Capture Facility On-Budget and On-Schedule. http://investors.nrg.com/ phoenix.zhtml?c=121544&p=irol-newsArticle&ID=2236424, 2017. Accessed on February 6, 2017.
- [3] U.S. Department of Energy, National Energy Technology Laboratory (NETL). Recovery Act: Petra Nova Parish Holdings: W.A. Parish Post-Combustion CO₂ Capture and Sequestration Project. https://www.netl.doe.gov/research/coal/project-information/fe0003311, 2016. Accessed on February 6,2017.
- [4] U.S. Office of Fossil Energy. Petra Nova W.A. Parish Project. https://energy.gov/fe/ petra-nova-wa-parish-project, 2017. Accessed on January 17, 2017.
- [5] Carbon Capture & Sequestration Technologies at MIT. Petra Nova W.A. Parish Fact Sheet: Carbon Dioxide Capture and Storage Project. https://sequestration.mit.edu/tools/ projects/wa_parish.html, 2016. Accessed on January 20, 2017.
- [6] E. S. Rubin, J. E. Davison, and H. J. Herzog. The cost of CO₂ capture and storage. International Journal of Greenhouse Gas Control, 40:378–400, 2015.
- [7] IPCC Special Report on Carbon Dioxide Capture and Storage. Technical report, Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B. and Davidson, O. and de Coninck, H. C. and Loos, M. and Meyer L. A. (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp., 2005.
- [8] Simpson, J. and McConnel, C. and Matsuda, Y. Economic Assessment of Carbon Capture and Storage Technologies: 2011 update. Technical report, Worley Parsons and Schlumberger, 2011.
- [9] Leena Koottungal. 2014 worldwide EOR survey. Data report, Oil & Gas Journal, 2014.
- [10] Schlumberger. Pore-Pressure Gradient Definition. http://www.glossary.oilfield.slb. com/Terms/p/pore-pressure_gradient.aspx, 2017. Accessed on January 10, 2017.
- [11] James P. Meyer. Summary of Carbon Dioxide Enhanced Oil Recovery CO₂EOR Injection Well Technology. Background report, American Petroleum Institute, 2007.
- [12] R. Span and W. Wagner. A New Equation of State for Carbon Dioxide, Covering the Fluid Region from the Triple Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data., 25:1509–1596, 1996.
- [13] IEA Greenhouse Gas R&D Program (IEA GHG). CO₂ Storage in Depleted Oilfields: Global Application Criteria for Carbon Dioxide Enhanced Oil Recovery. 2009/12 December, 2009.
- [14] United States Department of Labor: Bureau of Labor Statistics. Databases, Tables & Calculators by Subject: CPI Inflation Calculator. https://www.bls.gov/data/inflation_ calculator.htm. Accessed on January 10, 2017.
- [15] Godec, Michael. In CO₂-EOR and CCUS: Worldwide Potential and Commercial Drivers, SPE Annual Technical Conference and Exhibition Special Session: CO₂-EOR as a Pathway for CCUS, 2014. Amsterdam, Netherlands, October 2014.
- [16] Global CCS Institute. Large Scale CCS Facilities: Project Database. https:// www.globalccsinstitute.com/projects/large-scale-ccs-projects, 2017. Accessed on November 1, 2017.

[17] Napp, T. and Bernie, D. and Thomas, R. and Lowe, J. and Hawkes, A. and Ghambir, A. Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transition Analysis. *Energies*, 10, 2017.