Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

- SUPPLEMENTARY MATERIAL -

An Electrochemical Cell with Gortex-based Electrodes Capable of Extracting Pure Hydrogen from Highly Dilute Hydrogen-Methane Mixtures

Klaudia Wagner,* Prerna Tiwari, Gerhard F. Swiegers,* Gordon G. Wallace

Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterial Science, University of Wollongong, Wollongong, NSW 2522, Australia Email: kwagner@uow.edu.au; swiegers@uow.edu.au

Figure S1. Preparation of slurry/mesh/Gortex membrane assemblies.

Figure S2. Preparation of laminate-mounted electrodes.

Figure S3. Photographs (a) and cross-sectional schematic (b) of the test cell, showing the electrical and gas connections.

2

Experiment	Flow conditions at anode	Potential applied	Observation
number		News	No bubbles due to CU ano second about of
1	10 mL/min, pure (100%) CH ₄	None	No bubbles due to CH ₄ crossover observed
		(3-electrode; vs	at cathode when monitored for 20 min
		Ag/AgCl)	
2	50 mL/min, pure (100%) CH ₄	None	No bubbles due to CH ₄ crossover observed
		(3-electrode; vs	at cathode when monitored for 20 min
		Ag/AgCl)	
3	10 mL/min, pure (100%) CH ₄	-0.2 to +0.4 V	No current observed and no bubbles
		(3-electrode; vs	oberved at cathode
		Ag/AgCl)	
4	50 mL/min, pure (100%) CH ₄	-0.2 to +0.4 V	No current observed and no bubbles
		(3-electrode; vs	oberved at cathode
		Ag/AgCl)	
5	During potential sweep: 10	-0.2 V to +0.4 V	Increasing currents observed with increasing
	ml/min CH ₄ + 10 ml/min H ₂	(3-electrode; vs	potential. At +0.4V vs Ag/AgCl, when H ₂ flow
	(i.e. 50% H ₂ & 50% CH₄).	Ag/AgCl)	was stopped, the current fell to zero (with
	(· · 2 - · · · · · · · · · · · · ·	8, 8 1	CH₄ flow still on).
	After potential sweep (at		
	+0.4 V): H _a flow turned off		
	(i + becomes 100% CH)		
6	During potential sweep: 10	$-0.2 V t_{0.4} 0.7 V$	Increasing currents observed with increasing
0	ml/min CH + 10 ml/min H	$-0.2 \vee (0 + 0.7 \vee (2 + 0.6 \times 10^{-1}))$	notantial At 10.7 V when H flow is
	(1, 2, 5, 0) $(1, 3, 5, 0)$ $(1, 1, 2, 5, 0)$	(z-electione)	potential. At ± 0.7 V, when Π_2 how is
	(I.e. 50% $H_2 \otimes 50\% CH_4$).		below)
	After potential sweep (at		
	+0.7 V): H_2 flow turned off		
	(i.e.becomes 100% CH ₄)		

Table S1. Experiments to assess methane reactivity at the anode and methane crossover to the cathode during cell operation.

Graphical data from experiment 6 above:

Figure S4. Long-term performance of the cell at 0.4 V (vs. Ag/AgCl) with a mixture of 10 mL/min hydrogen and 10 mL/min methane flowing through the anode.