Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

## - SUPPLEMENTARY MATERIAL -

## An Electrochemical Cell with Gortex-based Electrodes Capable of Extracting Pure Hydrogen from Highly Dilute Hydrogen-Methane Mixtures

Klaudia Wagner,\* Prerna Tiwari, Gerhard F. Swiegers,\* Gordon G. Wallace

Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterial Science, University of Wollongong, Wollongong, NSW 2522, Australia Email: kwagner@uow.edu.au; swiegers@uow.edu.au



Figure S1. Preparation of slurry/mesh/Gortex membrane assemblies.



Figure S2. Preparation of laminate-mounted electrodes.



**Figure S3.** Photographs (a) and cross-sectional schematic (b) of the test cell, showing the electrical and gas connections.

2

| Experiment<br>number | Flow conditions at anode                                                                                                                                                                      | Potential applied                                | Observation                                                                                                                                                              |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | 10 mL/min, pure (100%) $CH_4$                                                                                                                                                                 | None<br>(3-electrode; vs                         | No bubbles due to CH <sub>4</sub> crossover observed<br>at cathode when monitored for 20 min                                                                             |
|                      |                                                                                                                                                                                               | Ag/AgCl)                                         |                                                                                                                                                                          |
| 2                    | 50 mL/min, pure (100%) CH <sub>4</sub>                                                                                                                                                        | None                                             | No bubbles due to CH <sub>4</sub> crossover observed                                                                                                                     |
|                      |                                                                                                                                                                                               | (3-electrode; vs<br>Ag/AgCl)                     | at cathode when monitored for 20 min                                                                                                                                     |
| 3                    | 10 mL/min, pure (100%) CH <sub>4</sub>                                                                                                                                                        | -0.2 to +0.4 V<br>(3-electrode; vs<br>Ag/AgCl)   | No current observed and no bubbles oberved at cathode                                                                                                                    |
| 4                    | 50 mL/min, pure (100%) CH <sub>4</sub>                                                                                                                                                        | -0.2 to +0.4 V<br>(3-electrode; vs<br>Ag/AgCl)   | No current observed and no bubbles oberved at cathode                                                                                                                    |
| 5                    | During potential sweep: 10<br>ml/min $CH_4 + 10$ ml/min $H_2$<br>(i.e. 50% $H_2$ & 50% $CH_4$ ).<br>After potential sweep (at<br>+0.4 V): $H_2$ flow turned off<br>(i.e.becomes 100% $CH_4$ ) | -0.2 V to +0.4 V<br>(3-electrode; vs<br>Ag/AgCl) | Increasing currents observed with increasing potential. At +0.4V vs Ag/AgCl, when $H_2$ flow was stopped, the current fell to zero (with CH <sub>4</sub> flow still on). |
| 6                    | During potential sweep: 10<br>ml/min $CH_4 + 10$ ml/min $H_2$<br>(i.e. 50% $H_2$ & 50% $CH_4$ ).<br>After potential sweep (at<br>+0.7 V): $H_2$ flow turned off<br>(i.e.becomes 100% $CH_4$ ) | -0.2 V to +0.7 V<br>(2-electrode)                | Increasing currents observed with increasing<br>potential. At +0.7 V, when H <sub>2</sub> flow is<br>stopped, current falls to zero. (Graph shown<br>below)              |

**Table S1.** Experiments to assess methane reactivity at the anode and methane crossover to the cathode duringcell operation.

Graphical data from experiment 6 above:





**Figure S4.** Long-term performance of the cell at 0.4 V (vs. Ag/AgCl) with a mixture of 10 mL/min hydrogen and 10 mL/min methane flowing through the anode.