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Figure S1. Preparation of slurry/mesh/Gortex membrane assemblies. 

  

 

 

 

 

 

 

 

 

 

 
Figure S2. Preparation of laminate-mounted electrodes. 
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Figure S3. Photographs (a) and cross-sectional schematic (b) of the test cell, showing the electrical and gas 
connections. 
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Experiment 
number 

Flow conditions at anode Potential applied 
 

Observation 

1 10 mL/min, pure (100%) CH4 None 
(3-electrode; vs 

Ag/AgCl) 

No bubbles due to CH4 crossover observed 
at cathode when monitored for 20 min 

2 50 mL/min, pure (100%) CH4 None 
(3-electrode; vs 

Ag/AgCl) 

No bubbles due to CH4 crossover observed 
at cathode when monitored for 20 min 

3 10 mL/min, pure (100%) CH4 -0.2 to +0.4 V 
(3-electrode; vs 

Ag/AgCl) 

No current observed and no bubbles 
oberved at cathode  

4 50 mL/min, pure (100%) CH4 -0.2 to +0.4 V 
(3-electrode; vs 

Ag/AgCl) 

No current observed and no bubbles 
oberved at cathode 

5 During potential sweep: 10 
ml/min CH4 + 10 ml/min H2 
(i.e. 50% H2 & 50% CH4). 
  
After potential sweep (at 
+0.4 V): H2 flow turned off 
(i.e.becomes 100% CH4) 

-0.2 V to +0.4 V 
(3-electrode; vs 

Ag/AgCl)  

Increasing currents observed with increasing 
potential. At +0.4V vs Ag/AgCl, when H2 flow 
was stopped, the current fell to zero (with 
CH4 flow still on). 

6 During potential sweep: 10 
ml/min CH4 + 10 ml/min H2 
(i.e. 50% H2 & 50% CH4). 
  
After potential sweep (at 
+0.7 V): H2 flow turned off 
(i.e.becomes 100% CH4) 

-0.2 V to +0.7 V 
(2-electrode) 

Increasing currents observed with increasing 
potential. At +0.7 V, when H2 flow is 

stopped, current falls to zero. (Graph shown 
below) 

 
Table S1. Experiments to assess methane reactivity at the anode and methane crossover to the cathode during 
cell operation. 
 
 
Graphical data from experiment 6 above: 
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Figure S4. Long-term performance of the cell at 0.4 V (vs. Ag/AgCl) with a mixture of 10 mL/min hydrogen and 
10 mL/min methane flowing through the anode. 
 


