<table>
<thead>
<tr>
<th>Certified Reference Material</th>
<th>Sample description</th>
<th>Extraction method</th>
<th>Analytical method</th>
<th>µg g⁻¹ (Certified value)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Certified Reference Materials Project SO-1</td>
<td>Regosolic clay soil</td>
<td>Not reported (N.R)</td>
<td>N.R</td>
<td>12.00</td>
<td>1</td>
</tr>
<tr>
<td>Canadian Certified Reference Materials Project SO-1</td>
<td>Podzalic B horizon soil</td>
<td>Pyrohydrolytic extraction</td>
<td>Coulometry</td>
<td>5.39</td>
<td>2</td>
</tr>
<tr>
<td>Canadian Certified Reference Materials Project SO-2</td>
<td>Calcareous C horizon soil</td>
<td>N.R</td>
<td>N.R</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>Canadian Certified Reference Materials Project SO-3</td>
<td>Podzalic B horizon soil</td>
<td>Pyrohydrolytic extraction</td>
<td>Coulometry</td>
<td>0.56</td>
<td>2</td>
</tr>
<tr>
<td>Canadian Certified Reference Materials Project SO-4</td>
<td>Chernozem A horizon soil</td>
<td>Pyrohydrolytic extraction</td>
<td>Coulometry</td>
<td>2.07</td>
<td>2</td>
</tr>
<tr>
<td>GBW07401: GSS-1</td>
<td>Podsolitic soil</td>
<td>Pyrohydrolytic extraction</td>
<td>ICP-MS</td>
<td>1.90</td>
<td>1</td>
</tr>
<tr>
<td>GBW07401: GSS-1</td>
<td>Podsolitic soil</td>
<td>TMAH extraction</td>
<td>ICP-MS</td>
<td>1.90</td>
<td>4</td>
</tr>
<tr>
<td>GBW07401: GSS-1</td>
<td>Podsolitic soil</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Flow injection analysis</td>
<td>1.82</td>
<td>6</td>
</tr>
<tr>
<td>GBW07402: GSS-2</td>
<td>Chestnut soil, semi-desert, vicinity of a copper deposit</td>
<td>Ammonium extraction</td>
<td>ICP-MS</td>
<td>1.55</td>
<td>8</td>
</tr>
<tr>
<td>GBW07402: GSS-2</td>
<td>Yellow-brown soil, temperate climate, vicinity of a gold mine</td>
<td>TMAH extraction</td>
<td>ICP-MS</td>
<td>1.60</td>
<td>5</td>
</tr>
<tr>
<td>GBW07402: GSS-2</td>
<td>Yellow-brown soil, temperate climate, vicinity of a gold mine</td>
<td>Pressurized acid-digestion</td>
<td>ICP-MS</td>
<td>1.80</td>
<td>9</td>
</tr>
<tr>
<td>GBW07402: GSS-2</td>
<td>Yellow-brown soil, temperate climate, vicinity of a gold mine</td>
<td>N.R</td>
<td>N.R</td>
<td>1.80 (1.80 ± 0.2)</td>
<td>1</td>
</tr>
<tr>
<td>GBW07402: GSS-2</td>
<td>Yellow-brown soil, temperate climate, vicinity of a gold mine</td>
<td>Pyrohydrolytic extraction</td>
<td>ICP-MS</td>
<td>1.70</td>
<td>4</td>
</tr>
<tr>
<td>GBW07402: GSS-2</td>
<td>Yellow-brown soil, temperate climate, vicinity of a gold mine</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Flow injection analysis</td>
<td>1.79</td>
<td>6</td>
</tr>
<tr>
<td>GBW07402: GSS-2</td>
<td>Yellow-brown soil, temperate climate, vicinity of a gold mine</td>
<td>Sintering extraction</td>
<td>ICP-MS</td>
<td>1.56</td>
<td>7</td>
</tr>
<tr>
<td>GBW07403: GSS-3</td>
<td>Yellow-red soil, humid climate</td>
<td>Ammonium extraction</td>
<td>ICP-MS</td>
<td>1.33 (1.30 ± 0.3)</td>
<td>8</td>
</tr>
<tr>
<td>GBW07403: GSS-3</td>
<td>Yellow-red soil, humid climate</td>
<td>TMAH extraction</td>
<td>ICP-MS</td>
<td>1.30</td>
<td>5</td>
</tr>
<tr>
<td>GBW07403: GSS-3</td>
<td>Yellow-red soil, humid climate</td>
<td>Pyrohydrolysis</td>
<td>Photometry</td>
<td>1.32</td>
<td>10</td>
</tr>
<tr>
<td>GBW07403: GSS-3</td>
<td>Yellow-red soil, humid climate</td>
<td>Pressurized acid-digestion</td>
<td>ICP-MS</td>
<td>1.30</td>
<td>9</td>
</tr>
<tr>
<td>GBW07403: GSS-3</td>
<td>Yellow-red soil, humid climate</td>
<td>N.R</td>
<td>N.R</td>
<td>1.30</td>
<td>1</td>
</tr>
<tr>
<td>GBW07403: GSS-3</td>
<td>Yellow-red soil, humid climate</td>
<td>Pyrohydrolytic extraction</td>
<td>ICP-MS</td>
<td>1.50</td>
<td>4</td>
</tr>
<tr>
<td>GBW07403: GSS-3</td>
<td>Yellow-red soil, humid climate</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Flow injection analysis</td>
<td>1.32</td>
<td>6</td>
</tr>
<tr>
<td>GBW07403: GSS-3</td>
<td>Yellow-red soil, humid climate</td>
<td>Sintering extraction</td>
<td>ICP-MS</td>
<td>1.29</td>
<td>7</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>Ammonium extraction</td>
<td>ICP-MS</td>
<td>9.37 (9.40 ± 1.2)</td>
<td>8</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>TMAH extraction</td>
<td>ICP-MS</td>
<td>9.0</td>
<td>5</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>Fusion pretreatment Na₂O₃</td>
<td>ICP-AES</td>
<td>9.71</td>
<td>11</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>Pressurized acid-digestion</td>
<td>ICP-MS</td>
<td>9.40</td>
<td>9</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>N.R</td>
<td>N.R</td>
<td>9.40</td>
<td>1</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>X-ray fluorescence</td>
<td>ICP-MS</td>
<td>9.00</td>
<td>12</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>Pyrohydrolytic extraction</td>
<td>ICP-MS</td>
<td>8.90</td>
<td>4</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Flow injection analysis</td>
<td>8.80</td>
<td>6</td>
</tr>
<tr>
<td>GBW07404: GSS-4</td>
<td>Limy-yellow soil, subtropical climate</td>
<td>Sintering extraction</td>
<td>ICP-MS</td>
<td>9.14</td>
<td>7</td>
</tr>
<tr>
<td>GBW07405: GSS-5</td>
<td>Yellow-red soil, humid climate</td>
<td>Ammonium extraction</td>
<td>ICP-MS</td>
<td>3.60 (3.80 ± 0.5)</td>
<td>8</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>TMAH extraction</td>
<td>TMAH extraction</td>
<td>TMAH extraction</td>
<td>TMAH extraction</td>
<td>Pressurized acid-digestion</td>
<td>Pressurized acid-digestion</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
</tr>
<tr>
<td>3.5</td>
<td>20.6</td>
<td>20.0</td>
<td>17.3</td>
<td>0.44</td>
<td>2.60</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Fusion pretreatment Na₂O₂</td>
<td>Microwave digestion</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
</tr>
<tr>
<td>4.63</td>
<td>17.10</td>
<td>23.36</td>
<td>22.22</td>
<td>19.40</td>
<td>20.6</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Pyrohydrolysis</td>
<td>TMAH extraction</td>
<td>N.R</td>
<td>N.R</td>
<td>Fusion pretreatment Na₂O₂</td>
<td>Fusion pretreatment Na₂O₂</td>
</tr>
<tr>
<td>Photometry</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
</tr>
<tr>
<td>3.99</td>
<td>21.00 (19.40 ± 1.0)</td>
<td>19.30 (19.30 ± 1.1)</td>
<td>19.40</td>
<td>0.44</td>
<td>2.60</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
<td>Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution</td>
</tr>
<tr>
<td>5.10</td>
<td>23.36</td>
<td>22.22</td>
<td>19.40</td>
<td>3.20</td>
<td>2.22</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

GBW07405: GSS-5
- Pyrohydrolysis
- Fusion pretreatment Na₂O₂
- Pressurized acid-digestion
- Pyrohydrolytic extraction
- Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution
- Sintering extraction

GBW07406: GSS-6
- Subtropical climate
- TMAH extraction
- Microwave digestion
- Pressurized acid-digestion
- Pyrohydrolytic extraction
- Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution
- Sintering extraction

GBW07407: GSS-7
- Tropical climate
- N.R
- TMAH extraction
- Pyrohydrolytic extraction
- Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution
- Sintering extraction

GBW07408: GSS-8
- Loess
- Pyrohydrolytic extraction
- TMAH extraction
- Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution
- Sintering extraction

GBW07409: ESSM-1
- No description provided
- Pressurized acid-digestion
- ICP-MS

GBW07410: ESSM-2
- Black soil
- Pressurized acid-digestion
- ICP-MS

GBW07411: ESSM-3
- Dark brown soil
- Pressurized acid-digestion
- ICP-MS

GBW07412: ESSM-4
- Brown soil
- Pressurized acid-digestion
- ICP-MS

GBW07413: GSS-9
- A dark brown podzolitic soil prepared as a composite sample from the cold-temperate and moderate rainfall region in the Songhuajiang-Nenjiang Plain, Heilongjiang Province. This sample is rich in organic matter.
- Fusion pretreatment Na₂O₂
- ICP-AES, ICP-MS, XRF, NAA, AAS, atomic fluorescence spectrometry, volumetric, colourimetric

GBW07414: GSS-10
- A dark brown podzolitic soil prepared as a composite sample from the cold-temperate and moderate rainfall region in the Songhuajiang-Nenjiang Plain, Heilongjiang Province. This sample is rich in organic matter.
- Aqua regia

GBW07415: GSS-11
- A moist-brown soil prepared as a composite sample from the temperate and moist region in the Liaoh River Plain, Liaoning Province
- Fusion pretreatment Na₂O₂
- ICP-AES
GBW07425: GSS-11
Aqua regia
ICP-AES, ICP-MS, XRF, NAA, AAS, atomic fluorescence spectrometry, volumetric, colourimetric
1.60

GBW07425: GSS-11
Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution
Flow injection analysis
2.46

GBW07425: GSS-11
A brown calcareous soil prepared as a composite sample from the dry and cold agricultural district on the southern fringe of the Zhunagaer Basin, Xinjiang. This sample contains obvious calcareous deposits.
Fusion pretreatment Na$_2$O$_2$
ICP-AES
0.74

GBW07426: GSS-12
Aqua regia
ICP-AES, ICP-MS, XRF, NAA, AAS, atomic fluorescence spectrometry, volumetric, colourimetric
1.40

GBW07426: GSS-12
Catalytic reaction during the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acid solution
Flow injection analysis
2.22

GBW07426: GSS-12
A powdery sandy yellow-moist soil prepared as a composite sample from the south temperate and sub-moist alluvial region in the North China Plain derived from the Yellow and Haihe River.
Aqua regia
ICP-AES, ICP-MS, XRF, NAA, AAS, atomic fluorescence spectrometry, volumetric, colourimetric
2.40

GBW07428: GSS-13
A purple soil prepared as a composite sample from the subtropical and high rainfall hilly country region in the Sichuan Basin. The underlying bedrock was Mesozoic sandy shale.
Aqua regia
ICP-AES, ICP-MS, XRF, NAA, AAS, atomic fluorescence spectrometry, volumetric, colourimetric
0.90

GBW07429: GSS-15
Red soil, rich in selenium
Aqua regia
ICP-AES, ICP-MS, XRF, NAA, AAS, atomic fluorescence spectrometry, volumetric, colourimetric
2.30

GBW07429: GSS-15
Kuroboku soils (Andosol) originated from volcanic ash and rich in organic materials
Pressurized acid-digestion
Pyrohydrolytic extraction
ICP-MS
0.44

GBW07429: GSS-15
31 elements artificially added
Pyrohydrolytic extraction
ICP-MS
54.00

GBW07429: GSS-15
Maybe contaminated with hot particles resulting from the Chernobyl accident
Pyrohydrolytic extraction
ICP-MS
1.60

GBW07429: GSS-15
San Joaquin Soil
Microwave digestion
ICP-MS
1.75

GBW07429: GSS-15
Internal Atomic Energy Agency IAEA-375
International Atomic Energy Agency IAEA-375
International Atomic Energy Agency IAEA-375
JSSSPN NDG-1
NCS NCS DC 73312
NCS NCS DC 73312
NIST NIST SRM 2709
Andosol, plow layer
Thermal extraction
ICP-MS
3.09

GBW07429: GSS-15
San Joaquin Soil
Pressurized acid-digestion
Pyrohydrolytic extraction
ICP-MS
3.22

GBW07429: GSS-15
San Joaquin Soil
Pyrohydrolytic extraction
Photometry
3.09

GBW07429: GSS-15
San Joaquin Soil
Microbial digestion
ICP-MS
3.22

GBW07429: GSS-15
San Joaquin Soil
N.R
N.R
35.00

GBW07429: GSS-15
San Joaquin Soil
N.R
N.R
35.00

GBW07429: GSS-15
San Joaquin Soil
N.R
N.R
35.00
References

1. K. Govindaraju, Geostandards and Geoanalytical Research, 1994, 18, 1-158.