Time-dependent bacterial transcriptional response to CuO nanomaterials differs from that of Cu$^{2+}$ and provides insights into CuO nanomaterial toxicity mechanisms

Joe D. Moore,$^{1, 2}$ Astrid Avellan,$^{1, 2}$ Clinton W. Noack,1 Yisong (Alex) Guo,3
Gregory V. Lowry,$^{1, 2}$ Kelvin B. Gregory,$^{1, 2}$*

1Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC 27708, USA

3Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA

*Corresponding author: 5000 Forbes Avenue, 119 Porter Hall, Pittsburgh, PA 15213, USA. Phone: 412-268-9811. Fax: 412-268-7813. Email: kelvin@cmu.edu

Supporting Information consists of 32 pages, 3 table and 14 figures

Supplemental Methods (p. S2 – S3)

Table S1. Components in MMDM (p. S4)
Table S2. Alternative hypotheses for Mann-Whitney testing of gene expression data for comparisons made in this study (p. S4)
Table S3. Intensity means and polydispersity indices (PdI) of CuO NPs over time (p. S4)

Figure S1. Specificity tests of the CuO NP hyperspectral library signature (p. S5)
Figure S2. HSI of all treatments at 30, 60, and 180 min (p. S6)
Figure S3. *E. coli* growth at various CuO NP and Cu$^{2+}$ concentrations (as Cu) and housekeeping gene (*rrsA*) expression (p. S7)
Figure S4. Treated and undosed *E. coli* viability over time (p. S7)
Figure S5. Gene expression of *btuE* in response to Cu exposure (p. S8)
Figure S6. Gene expression of *recA* in response to CuO NPs (p. S8)
Figure S7. Gene expression of *fabA* in response to Cu exposure (p. S9)
Figure S8. Gene expression of *rpoE* in response to Cu exposure (p. S9)
Figure S9. Gene expression of *spy* in response to Cu exposure (p. S10)
Figure S10. Gene expression of four ROS-responsive genes in response to Cu exposure (p. S11)
Figure S11. X-band EPR spectra of various DMPO treated samples (p. S12)
Figure S12. Raw X-band EPR spectra of various DMPO treated samples without the removal of the Mn$^{2+}$ ion EPR signal (p. S13)
Figure S13. Gene expression of Cu-responsive genes and *sufA* in response to Cu exposure (p. S14)
Figure S14. Induction of induced versus non-induced genes (p. S15)

Works Cited (p. S16)

Supplemental statistical and computational methods (p. S17-S32)
Supplemental Methods

RNA extraction protocol in detail. Immediately following sampling, 2 mL RNAprotect was added to 1 mL of sample, vortexed on high, and allowed to incubate at room temperature for 10 min. The sample was then centrifuged for 10 min at 5000g. TE buffer with 1 mg/L lysozyme was added to the pellet, vortexed, and incubated for 10 min with shaking. Freshly made 2-mercaptoethanol-RLT buffer was added and vortexed, then 100% ethanol was added and mixed by pipetting before being transferred to a spin column and centrifuged. RW1 buffer was added and centrifuged through the spin column before on-column DNase 1 treatment according to the manufacturer’s protocol. Freshly made RPE-ethanol was added to the spin column twice. Spin columns were transferred to a clean 1.5 mL tube and allowed to air dry for 5 min. RNA was eluted into 60 µL RNase-free 45°C water that was divided into two 30 µL additions with 3 min incubation before centrifuging.

Growth inhibition assays. Inhibition of E. coli growth by varying concentrations of CuO ENMs and Cu\(^{2+}\) was measured using 96-well plates and a microplate reader (SpectraMax, Molecular Devices, Sunnyvale, CA). Approximately 10\(^6\) colony forming units (CFU) per mL were added to a 96-well plate containing serially diluted CuO NPs or Cu\(^{2+}\) in the growth medium. The plate was shaken at 160 rpm at 30ºC, and OD600 was measured at 0 hr and 24 hr. Growth was determined by subtracting the 0 hr reading from the 24 hr reading. Abiotic and undosed biotic controls were included alongside CuO NP and Cu\(^{2+}\) treatments, and eight wells were used per treatment or control condition. Stocks of Cu\(^{2+}\) were made from Cu(NO\(_3\))\(_2\) in ultrapure water. ICP-MS analysis (as described above) was used to ensure that nominal Cu concentrations agreed with analytical concentrations.

Both CuO NPs and Cu\(^{2+}\) demonstrated the expected dose response, with higher Cu concentrations leading to lower bacterial growth at 24 hr (Figure S2). Cu\(^{2+}\) inhibited growth at ~1 ppm, while CuO NPs allowed growth out to ~20 mg/L Cu. Previous studies have observed greater bacterial susceptibility to dissolved Cu than Cu ENMs.\(^1,2\) The CuO NP data appear to show an increase in E. coli growth at low concentrations. This increase has been attributed to hormesis for exposures to Ag NPs.\(^3\) However, follow up plating experiments showed that CFUs did not increase at the same low CuO NP concentrations (data not shown), suggesting that the low CuO NP concentration optical density increases were an artefact of the measurements.

Discussion of CuO NP dosing concentration. We chose to dose at 100 mg/L (as Cu) CuO NPs to ensure that the NPs imposed a stress on the E. coli. This concentration has also been used in a previous study of CuO NP bacterial toxicity.\(^4\) Inhibition assays with CuO NPs showed that 100 mg/L inhibited the growth of 10\(^9\) E. coli CFU/mL. At the higher bacterial concentration needed for the transcriptional assays (5 x 10\(^7\) CFU/mL) 100 mg/L CuO NPs provided a sublethal stress based on the observed increase in rrsA gene expression over time.

Viability experiments. E. coli was grown and treated with Cu as described in the main text for HSI and transcriptional assays. All treatments were done in duplicate, including an undosed control. After 30, 60, 100, 140, and 180 min of exposure, samples were vortexed to homogenize, and 100 µL samples of each sample was serially diluted. 50 µL of serially diluted samples were added to LB agar plates, again in duplicate. Plates were incubated at 37ºC, and CFUs were counted 24 hr later. Means and standard deviations were calculated at each time point.

Oxidative stress probe protocol in detail. Cells were grown to early log phase growth as with the transcriptional response experiments. At OD ~ 0.2, cells were pelleted by centrifuging for 15 min at 8000g. While the cells were centrifuging, a 10 mM stock of CM-H2DCFDA (Molecular Probes, Life
Technologies) was made by adding DMSO to a single CM-H2DCFDA tube in the dark. This 10 mM stock was diluted to 10 µM in pH 7.2 phosphate buffered saline (PBS). The cells were resuspended in the PBS containing the probe and allowed to incubate with gentle shaking for 30 min to allow for the probe to penetrate into the cells. The cells were then centrifuged and suspended back in an appropriate volume of growth medium for 5 x 10⁷ CFU/mL. Treatments were added immediately. At 10, 60, and 180 min, samples were vortexed and 200 µL were withdrawn from each sample in triplicate and added to a 96 well plate. Fluorescence emitted at 517 nm was measured immediately on a microplate reader after excitation at 494 nm.

Electron paramagnetic resonance (EPR) methods in detail. EPR was conducted using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) (Cayman Chemical, Ann Arbor, MI) as a radical spin trap. After 60 and 180 min Cu-exposed and undosed bacteria were incubated with 20 mM DMPO for 15 min at room temperature before being frozen with liquid N₂, where they were stored until EPR measurements were taken. Positive controls in H₂O and MMDM were generated by reacting 0.1 mM Fe²⁺, 1 mM H₂O₂ and 20 mM DMPO in a glovebox (MBraun, Garching, Germany) filled with N₂ gas (O₂ < 0.5 ppm) for 5 min at room temperature, then were frozen in liquid N₂. Negative controls were generated by incubating 20 mM DMPO with abiotic MMDM, *E. coli* in MMDM, Cu²⁺ in MMDM, and CuO NPs in MMDM. X-band EPR spectra were measured on a Bruker Elexsys E-500 spectrometer (microwave frequency = 9.64 GHz, Billerica, MA) equipped with an Oxford ESP-910 cryostat (Abingdon, United Kingdom). All spectra were measured at 73 K with 0.3 mT modulation amplitude, 100 kHz modulation frequency. EPR spin quantification was done by comparing the double integration of an EPR signal with unknown concentration with the double integration of the EPR signal from a known concentration standard measured under the same measurement conditions. The spin standard used in this study is 1.2 mM Cu(II)-EDTA solution. EPR spectra were processed and plotted using SpinCount software.⁵

EPR spectral interpretation. The DMPO treated samples included in this study exhibited three types of EPR-detectable signals. Two EPR signals were observed in all samples prepared in MMDM. The signal spreading across a wide magnetic field range (from 320 mT to 370 mT) is characteristic of Mn²⁺ (Figure S11). The signal exhibiting a sharp g = 2 resonance belongs to certain organic radical with unknown origin (Figures S10g and S10h). The spin concentration quantification suggested that the Mn²⁺ ion signal was < 20 µM, and the organic radical signal was << 1 µM. In all Cu²⁺ or CuO NP dosed samples, a third EPR signal was observed with various spin concentrations (Figure S10a-f), which was centered at g ~ 2 with a four-line splitting pattern. This EPR signal was reproduced (Figures S10i and S10j) in two positive control samples with the presence of DMPO under Fenton chemistry reaction conditions (see the experiment section for the details of sample preparation), suggesting that this signal belongs to a DMPO radical adduct formed in the presence of ·OH. The spectral analysis suggested that this four-line splitting EPR signal can be simulated by including a ¹⁴N hyperfine coupling and ¹H hyperfine coupling interactions with hyperfine coupling constants of A(¹⁴N) = 60 MHz and A(¹H) = 65 MHz (Figure S10j). Although these parameters do not resemble the ones from the DMPO-OH radical adduct (A(¹⁴N) = A(¹H) = 40 MHz) that are expected to be generated from the spin trap experiment, these parameters are comparable to the ones from a DMPO radical adduct with carbon centered radicals (A(¹⁴N) = 45 MHz and A(¹H) = 65 MHz).⁶ DMSO was used as the solvent to prepare our DMPO stock solution. It has been reported that ·OH will activate DMSO to form a carbon centered radical (·CH₃), and further form the DMPO-CH₃ radical adduct.⁶ Therefore, due to the presence of DMSO during our spin trap experiment, the DMPO-CH₃ radical adduct is observed in our systems.
Table S1. Components in MMDM. Ionic strength was estimated to be 0.485 using Visual Minteq (version 3.1) equilibrium modeling software.

<table>
<thead>
<tr>
<th>mM with pH 6.5 MDM + supplements</th>
<th>K</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO4</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>NH4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>SO4</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Mn</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>NO3</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>MoO4</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>SeO3</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>WO4</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Table S2. Alternative hypotheses for Mann-Whitney testing of gene expression data for comparisons made in this study. H_1 refers to the value of the location shift, μ, between sample distributions of gene (x) expression at time (t) between treatments (y or undosed).

<table>
<thead>
<tr>
<th>Statistical comparison</th>
<th>Biological question</th>
<th>H_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. control, $rrsA$ expression only</td>
<td>Is bacterial growth negatively impacted by Cu exposures? $\mu_{rrsA,t}^{y-undosed} < 0$</td>
<td></td>
</tr>
<tr>
<td>Treatment vs. control, all other genes</td>
<td>Does Cu exposure lead to differential expression of stress-response genes? $\mu_{x,t}^{y-undosed} > 0$</td>
<td></td>
</tr>
<tr>
<td>Treatment vs. treatment, all genes</td>
<td>Does the mode of Cu exposure lead to differential expression of stress-response genes? $\mu_{x,t}^{y_1-y_2} \neq 0$</td>
<td></td>
</tr>
</tbody>
</table>

Table S3. Intensity means and polydispersity indices (PdI) of CuO NPs over time.

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Intensity mean [nm]</th>
<th>PdI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>638 ± 150</td>
<td>0.356 ± 0.049</td>
</tr>
<tr>
<td>10</td>
<td>766 ± 81</td>
<td>0.402 ± 0.011</td>
</tr>
<tr>
<td>60</td>
<td>707 ± 160</td>
<td>0.422 ± 0.080</td>
</tr>
<tr>
<td>180</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Figure S1. Specificity tests of the CuO NP hyperspectral library signature.
Figure S2. HSI of all treatments at 30, 60, and 180 min. Arrows point to OMVs detected at 180 min with NP and gradual ion treatment.
Figure S3. *E. coli* growth at various CuO NP and Cu$^{2+}$ concentrations (as Cu) and housekeeping gene (*rrsA*) expression. (A) Growth was measured by change in optical density between 0 and 24 hr. (B) *rrsA* gene expression was statistically similar across treatments and showed at 180 min the enhanced expression that is characteristic of entering exponential growth.

Figure S4. Treated and undosed *E. coli* viability over time. Results of time-resolved CFU experiment for all treatments on a y-axis log scale.
Figure S5. Gene expression of *btuE* in response to Cu exposure. Statistically significant differences were observed at 10 min. The blue horizontal line is fixed at one to represent the expression of the undosed control. Error bars represent one SD of triplicate samples.

Figure S6. Gene expression of *recA* in response to CuO NPs. The blue horizontal line is fixed at one to represent the expression of the undosed control. Error bars represent one SD of triplicate samples.
Figure S7. Gene expression of \textit{fabA} in response to Cu exposure. Statistically significant differences were observed at 60 min. The blue horizontal line is fixed at one to represent the expression of the undosed control. Error bars represent one SD of triplicate samples.

Figure S8. Gene expression of \textit{rpoE} in response to Cu exposure. Statistically significant differences were observed at 30 min. The blue horizontal line is fixed at one to represent the expression of the undosed control. Error bars represent one SD of triplicate samples.
Figure S9. Gene expression of *spy* in response to Cu exposure. Statistically significant differences were observed at 30 min. The blue horizontal line is fixed at one to represent the expression of the undosed control. Error bars represent one SD of triplicate samples.
Figure S10. Gene expression of four ROS-responsive genes in response to Cu exposure. Details regarding each gene can be found in the main text. Statistically significant differences were observed for *ahpC* at 10 and 180 min; for *sodA* at 10, 30, and 180 min; and for *yqhD* at 30 and 60 min. The blue horizontal line is fixed at one to represent the expression of the undosed control. Error bars represent one SD of triplicate samples.
Figure S11. X-band EPR spectra of various DMPO treated samples. (a) Gradual Cu$^{2+}$-dosed bacteria grown to 180 min; (b) Gradual Cu$^{2+}$-dosed bacteria at 60 min; (c) pulse Cu$^{2+}$-dosed bacteria at 180 min; (d) CuO NP-dosed bacteria at 180 min; (e) Cu$^{2+}$-dosed MMDM; (f) CuO NP-dosed MMDM; (g) undosed bacteria at 180 min; (h) abiotic MMDM only; (i) positive control in MMDM; (j) positive control in H$_2$O (black) and the spectral simulation (red) using the following parameters: $g = 2.005$, $A(^{14}$N) = 60 MHz, $A(^{1}$H) = 65 MHz. The Mn$^{2+}$ ion signal has been removed for each spectrum except for spectrum j, where no Mn$^{2+}$ ion was present. The spin concentrations of the DMPO radical adduct in spectra (a) – (h) are indicated in the figure. Measurement conditions: microwave frequency, 9.64 GHz; microwave power, 20 uW; modulation amplitude, 0.3 mT; modulation frequency, 100 kHz; temperature, 73 K.
Figure S12. Raw X-band EPR spectra of various DMPO treated samples without the removal of the Mn$^{2+}$ ion EPR signal. (a) Gradual Cu$^{2+}$-dosed bacteria at 180 min; (b) Gradual Cu$^{2+}$-dosed bacteria at 60 min; (c) pulse Cu$^{2+}$-dosed bacteria at 180 min; (d) CuO NP-dosed bacteria at 180 min; (e) Cu$^{2+}$-dosed MMDM; (f) CuO NP-dosed MMDM; (g) undosed bacteria at 180 min; (h) abiotic MMDM only; (i) positive control in MMDM; (j) the typical Mn$^{2+}$ ion EPR spectrum measured in the MMDM only. Measurement conditions: microwave frequency, 9.64 GHz; microwave power, 20 uW (except for spectrum j, which was measured using 2 mW); modulation amplitude, 0.3 mT; modulation frequency, 100 kHz; temperature, 73 K.
Figure S13. Gene expression of Cu-responsive genes and sufA in response to Cu exposure. Details regarding each gene can be found in the main text.
Figure S14. Induction of induced versus non-induced genes. Induced genes (copA, cueO, cusC, sufA, cpxP, and spy) demonstrate induction over the course of the experiment, but especially through 60 min, whereas non-induced genes do not (A). Median fold control over the whole time series distinguishes induced versus non-induced genes as well (B). The dashed line demarcates 2-fold control expression.
Works Cited

Supplemental statistical and computational methods

This section is meant to more thoroughly describe and divulge the computational methodologies utilized in the main text as well as provide additional insight into results where appropriate. Specifically, the text here will walk through the relevant steps in the analysis of gene expression data and oxidative-stress measured by fluorescence.

This section was written in R Markdown v1.5 using RStudio and contains all the relevant code necessary to reproduce the analysis presented in the manuscript.

Guide to computational methods

Analysis dependencies

The code makes extensive use of the packages `plyr`, `broom`, `magrittr`, `dplyr`, `tidyr`, and `ggplot2` (where the latter three packages are loaded as part of the `tidyverse` package) in addition to the functions present in the base R language. Therefore, these packages need to be installed by the R user in order to reproduce this analysis. Aside from plotting commands from `ggplot2` (which will be acknowledge with in-script comments: `# This is a comment`) and the pipe operator `%>%` (loaded via the `dplyr` namespace, but part of the `magrittr` package), functions from external packages will be indicated by `package_name::function_name`. When these packages are attached via the `library()` function (as they are here), this syntax is technically redundant. However, this convention will still be used here to provide attribution to the appropriate source throughout.

```r
## Uncomment these lines and execute in R if these packages are not already installed.
# install.packages('plyr')
# install.packages('broom')
# install.packages('tidyverse')
# install.packages('magrittr')
library(plyr)
library(broom)
library(tidyverse)
library(magrittr)
```

Analysis environment

The code given herein runs without errors under the following configuration; no assurances are made for backward or forward compatibility of R versions or versions of the dependencies.

```r
## R version 3.4.0 (2017-04-21)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: OS X El Capitan 10.11.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
##
## locale:
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
```
Genes expression data, quality control, and expression normalization

Gene expression data are stored in a CSV file accompanying this manuscript (first few rows shown below). The 16S rRNA gene, rrsA, was used as a housekeeping gene against which all other target genes were normalized. rrsA has been validated for this function before. The variables in this dataset are: Treatment (the mode of Cu exposure), Time (the duration of exposure in minutes), Gene (the target gene), and Expression (the expression of the target gene relative to rrsA). For Treatment the variable levels are: Undosed (the experimental control with no Cu exposure), ENM (the nano-Cu dosing), Pulse (immediate 100 mg/L dissolved Cu dosing), and Gradual (incremental dissolved Cu dosing to match observed ENM dissolution kinetics).

```r
# add an identifier of the experimental replicates
gene_expression <- read.csv('gene-expression-time-series-UPDATED.csv') %>%
dplyr::group_by(Treatment, Time, Gene) %>%
dplyr::mutate(rep = 1:n()) %>%
dplyr::ungroup()
dplyr::tbl_df(gene_expression)
```

As described in the main text, the relevant dependent variable in our analysis is the “fold-control” gene expression, that is the ratio of gene expression in a treatment sample relative to the expression of that gene in the control sample.
Fold control_{xy} = \frac{Expression_{x,y}/Expression_{rsA,y}}{Expression_{x,Control}/Expression_{rsA,Control}}

Because control samples were not explicitly paired to treatment samples, it is necessary to average Expression_{x} across triplicates for normalization. However, inspection of the data showed some potential outlier data for one replicate at the t = 10 min. data point. An example of the undosed control data is shown below.

Filter out undosed control samples to visualize gene expression
control <- dplyr::filter(gene_expression, Treatment == 'Undosed')

These functions from ggplot2 package
control_plt <- ggplot(control, aes(x = Time, y = Expression, color = factor(rep))) + geom_point() + facet_wrap(~Gene, scales = 'free') + labs(title = 'Gene expression in undosed control samples')
print(control_plt)

Closer examination of the dataset show that the third replicate at t = 10 minutes of the undosed sample produced the preponderance of extreme values in this dataset as measured by absolute deviation from the median of the replicates. As such, this data point was removed from the analysis discussed in the manuscript, however pieces of the analysis with and without that data point are included here.
\[\epsilon = \frac{|\text{Expression}_x - \text{median}(\text{Expression}_x)|}{\text{median}(\text{Expression}_x)} \]

Add absolute deviation from the median for outlier identification

gene_expression %<>% dplyr::group_by(Treatment, Time, Gene) %>%
dplyr::mutate(abs_dev = abs(Expression - median(Expression)) / median(Expression)) %>%
dplyr::ungroup()

arrange and display

gene_expression %>%
dplyr::arrange(desc(abs_dev)) %>%
dplyr::tbl_df()

A tibble: 799 x 6
Treatment Time Gene Expression rep abs_dev
<fctr> <int> <fctr> <dbl> <int> <dbl>
1 Undosed 10 otsB 0.000100000 3 459.82949
2 Undosed 10 sufA 0.019673469 3 388.57364
3 Undosed 10 cpxP 0.000414000 3 344.00000
4 Undosed 10 spy 0.000336000 3 184.63536
5 Undosed 10 rpoE 0.606530612 3 73.74280
6 ENM 10 otsB 0.000002690 1 59.99773
7 ENM 10 sufA 0.000075000 1 44.18072
8 ENM 10 btuE 0.000006410 1 23.65385
9 Undosed 10 recA 0.004573526 3 18.79881
10 Undosed 10 recA 0.004573526 3 18.79881
... with 789 more rows

Remove control replicate with anomalous data

gene_expression_clean <- gene_expression %>%
 filter(!(Treatment == 'Undosed' & rep == 3 & Time == 10))

ccontrol_plt_clean <- ggplot(filter(gene_expression_clean, Treatment == 'Undosed'),
aes(x = Time,
 y = Expression,
 color = factor(rep))) +
 geom_point() +
 facet_wrap(~Gene, scales = 'free') +
 labs(title = 'Gene expression in undosed control samples\nafter outlier removal')
print(control_plt_clean)
These control data were then averaged for each gene and time point for fold-control normalization of treatment data.

```r
# Average over control replicates for determining fold control
control_av <- gene_expression_clean %>%
dplyr::filter(Treatment == 'Undosed') %>%
dplyr::group_by(Time, Gene) %>%
dplyr::summarize(Expression = mean(Expression)) %>%
dplyr::ungroup()

control_av_raw <- gene_expression_clean %>% # including anomalous data
  dplyr::filter(Treatment == 'Undosed') %>%
dplyr::group_by(Time, Gene) %>%
dplyr::summarize(Expression = mean(Expression)) %>%
dplyr::ungroup()

# Add fold control calculation
treatment <- dplyr::filter(gene_expression_clean, Treatment != 'Undosed') %>%
  dplyr::left_join(control_av, by = c('Time', 'Gene'),
  suffix = c('.treat', '.cont')) %>%
  dplyr::mutate(fold_control = Expression.treat/Expression.cont)

treatment_raw <- dplyr::filter(gene_expression, Treatment != 'Undosed') %>%
  dplyr::left_join(control_av, by = c('Time', 'Gene'),
  suffix = c('.treat', '.cont')) %>%
  dplyr::mutate(fold_control = Expression.treat/Expression.cont)
```
Hypothesis testing of gene expression data

The first analysis we performed on the gene expression data sought to determine if ENM exposure was sublethal by examining fold changes in rrsA expression at each time point. This is can be done with a one-sided Mann-Whitney test:

\[H_0 : \mu_{ENM-Ctrl} = 0 \]
\[H_1 : \mu_{ENM-Ctrl} < 0 \]

Establish sub-lethal Cu exposure using Mann-Whitney on raw expression of rrsA `alternative` set to "less" b.c. want one sided test if growth is significantly less in the treated samples
gene_expression_clean %>%
dplyr::filter(Gene == 'rrsA') %>%
dplyr::select(rep, Time, Treatment, Expression) %>%
tidyr::spread(Treatment, Expression) %>%
tidyr::gather(treatment, expression, ENM:Pulse) %>%
dplyr::group_by(Time, treatment) %>%
dplyr::do{
 broom::tidy(
 wilcox.test(x = .$expression, y = .$Undosed,
 alternative = 'less', exact = T)
)
}
dplyr::select(Time, treatment, p.value) %>%
tidyr::spread(treatment, p.value)

A tibble: 4 x 4
Groups: Time [4]
Time ENM Gradual Pulse
* <int> <dbl> <dbl> <dbl>
1 10 0.10 0.6666667 0.8128703
2 30 0.05 0.8000000 0.3500000
3 60 0.10 0.5000000 0.1000000
4 180 0.05 0.1000000 0.3500000
gene_expression %>%
 dplyr::filter(Gene == 'rrsA') %>%
 dplyr::select(rep, Time, Treatment, Expression) %>%
 tidyr::spread(Treatment, Expression) %>%
 tidyr::gather(treatment, expression, ENM:Pulse) %>%
 dplyr::group_by(Time, treatment) %>%
 dplyr::do{
 broom::tidy(
 wilcox.test(x = .$expression, y = .$Undosed,
 alternative = 'less', exact = T)
)
 }
dplyr::select(Time, treatment, p.value) %>%
tidyr::spread(treatment, p.value)

A tibble: 4 x 4

S22
Next we sought to determine the genes identified in the literature as being Cu-induced exhibited differential expression between undosed and ENM dosed experiments. These genes were: *copA*, *cueO*, *cusC*, *cpxP*, *sufA*, and *spy*.

```r
drty::mutate(induced = ifelse(Gene %in% induced_genes, 'Induced', 'Non-induced'))
```

```r
ggplot(filter(treatment, Treatment == 'ENM'),
      aes(x = Time, y = Expression, color = Treatment)) +
  geom_point(position = position_dodge(5)) +
  labs(title = 'rrsA expression in treatment and control samples')
```
```r
# alternative set to "greater" b.c. Treatment factor order is alphabetical (i.e. ENM is group 1, Undosed is group 2)
diff_expr <- gene_expression_clean %>%
dplyr::filter(Gene != 'rrsA', Treatment %in% c('ENM', 'Undosed')) %>%
dplyr::group_by(Gene, Time) %>%
dplyr::do(
  broom::tidy(
    wilcox.test(.Expression ~ .Treatment, alternative = 'greater',
                exact = T, conf.int = T)
  )) %>%
dplyr::mutate(p.value = round(p.value, 2)) %>%
dplyr::select(Gene, Time, p.value)
```

```r
# including anomalous data
diff_expr_raw <- gene_expression %>%
dplyr::filter(Gene != 'rrsA', Treatment %in% c('ENM', 'Undosed')) %>%
dplyr::group_by(Gene, Time) %>%
dplyr::do(
  broom::tidy(
    wilcox.test(.Expression ~ .Treatment, alternative = 'greater',
                exact = T, conf.int = T)
  )) %>%
dplyr::mutate(p.value = round(p.value, 2)) %>%
dplyr::select(Gene, Time, p.value)
```
```
) )
 dplyr::mutate(p.value = round(p.value, 2))
 dplyr::select(Gene, Time, p.value)
# Combine statistical and practical data
comb_diff <- treatment %>%
  dplyr::filter(Treatment == 'ENM') %>%
  dplyr::group_by(Gene, Time) %>%
  dplyr::summarize(mu_fc = mean(fold_control)) %>%
  dplyr::ungroup() %>%
  dplyr::left_join(diff_expr, by = c('Gene', 'Time'))

comb_diff_raw <- treatment_raw %>%
  dplyr::filter(Treatment == 'ENM') %>%
  dplyr::group_by(Gene, Time) %>%
  dplyr::summarize(mu_fc = mean(fold_control)) %>%
  dplyr::ungroup() %>%
  dplyr::left_join(diff_expr_raw, by = c('Gene', 'Time'))

# retain data meeting statistical and practical criterion
sig_diff <- comb_diff %>%
  dplyr::filter(p.value < 0.1, mu_fc > 2)

sig_diff_raw <- comb_diff_raw %>%
  dplyr::filter(p.value < 0.1, mu_fc > 2)

dplyr::tbl_df(sig_diff)
## # A tibble: 16 x 4
##   Gene Time mu_fc p.value
##   <fctr> <int> <dbl> <dbl>
## 1 copA   30 13.2  0.05
## 2 copA   60 13.6  0.05
## 3 copA  180  3.8  0.05
## 4 cpxP  30 364  0.05
## 5 cpxP  60 159  0.05
## 6 cpxP  180  19.6 0.05
## 7 cueO  30 5.11 0.05
## 8 cueO  60 6.0  0.05
## 9 cueO  180 4.25 0.05
##10 cusC  60 4.76 0.05
##11 otsB  30 4.16 0.05
##12 sodA  30 4.17 0.05
##13 spy   30 4.89 0.05
##14 spy   60 7.97 0.05
##15 spy  180 70.2 0.05
##16 sufA  30 2.19 0.05
dplyr::.tbl_df(sig_diff_raw)
## # A tibble: 17 x 4
##   Gene Time mu_fc p.value
##   <fctr> <int> <dbl> <dbl>
## 1 copA   30 13.2  0.05
## 2 copA   60 13.6  0.05
## 3 copA  180  3.8  0.05
## 4 cpxP  30 364  0.05
## 5 cpxP  60 159  0.05
## 6 cpxP  180  19.6 0.05
## 7 cueO  30 5.11 0.05
## 8 cueO  60 6.0  0.05
## 9 cueO  180 4.25 0.05
##10 cusC  60 4.76 0.05
##11 otsB  30 4.16 0.05
##12 sodA  30 4.17 0.05
##13 spy   30 4.89 0.05
##14 spy   60 7.97 0.05
##15 spy  180 70.2 0.05
##16 sufA  30 2.19 0.05
```
The genes which were found to be expressed significantly differently in the ENM-treated experiments compared to the undosed control ($p < 0.1$, Fold control$_{x,y} > 2$) were overwhelmingly in our expected list of Cu-induced genes (88% across all time points). Exclusion of the anomalous control replicate leads to no striking changes in the results of these analyses, only changing the statistical conclusion regarding $cucC$ expression at $t = 10$ min.

Next, we investigated differences in gene-expression among modes of Cu exposure. This was done first through a Mann-Whitney test (two sided Wilcoxon test), between the pulse- and ENM Cu exposure modes.

```r
# Mann-Whitney test for differences between ENM and Pulse Cu
# exposure modes on gene expression at each time point
treatment %>%
  filter(Treatment != 'Gradual') %>%
  group_by(Time, Gene) %>%
  do(
    tidy(
      wilcox.test(.$Expression.treat ~ .$Treatment, exact = T)
    )
  ) %>%
ggplot(.,aes(x = Time, y = p.value)) +
  geom_hline(yintercept = 0.1) +
  geom_point() +
  facet_wrap(~Gene) +
  labs(title = 'P-value of Mann-Whitney\ntest between ENM and Pulse dosing schemes')
```
Next, a Kruskal-Wallis test, the non-parametric analog to one-way ANOVA, was used to test for differences among all three exposure modes. Results are visualized as fold control vs. time for the three Cu exposure modes, with markers dimmed for comparisons not meeting our statistical significance criteria, $\alpha \leq 0.1$.

```r
# Kruskal–Wallis test for differences among Cu exposure modes
# on gene expression at each time point
kw_Cu_mode <- gene_expression_clean %>%
  dplyr::filter(Treatment != 'Undosed', Gene != 'rrsA') %>%
  dplyr::group_by(Time, Gene) %>%
  dplyr::do(broom::tidy(kruskal.test(.$Expression ~ .$Treatment))) %>%
  dplyr::select(Gene, Time, p.value) %>%
  mutate(sig = p.value <= 0.1)
treatment <- dplyr::filter(gene_expression_clean, Gene != 'rrsA') %>%
  dplyr::left_join(kw_Cu_mode, by = c('Gene', 'Time'))

ggplot(treatment, aes(x = Time, y = fold_control, 
  color = Treatment, 
  shape = Treatment, alpha = sig)) +
  geom_point(size = 2, position = position_dodge(5)) +
  facet_wrap(~Gene, scales = 'free') +
  scale_alpha_manual(values = c(0.2, 0.7)) +
  guides(alpha = F) +
```

S27
We further sought to explore differences among treatments on the temporal variation of gene expression in those genes that are specifically induced by Cu exposure. This is done by aggregating the fold-control data for all 6 induced genes for each treatment at each time point.

```r
induced_data <- treatment %>%
  dplyr::filter(Gene %in% induced_genes)

ggplot(induced_data, aes(x = Time, y = fold_control,
                          group = interaction(Time, Treatment),
                          fill = Treatment)) +
  geom_boxplot() + scale_y_log10()
```
```r
## Test across all treatments
induced_data %>%
  dplyr::group_by(Time) %>%
  dplyr::do{
    broom::tidy(
      kruskal.test(~ fold_control ~ Treatment)
    )
  } %>%
  dplyr::select(Time, p.value)

## # A tibble: 4 x 2
## # Groups: Time [4]
##   Time p.value
##  <int>  <dbl>
## 1   10   0.008185893
## 2   30   0.419690420
## 3   60   0.137231904
## 4  180   0.269809611

## Test treatments pairwise against ENM dosing
dplyr::data_frame(vs_ENM = c(Gradual, Pulse)) %>%
  plyr::ddply(.vs_ENM, function(df){
    induced_data %>%
      dplyr::filter(Treatment == 'ENM' | Treatment == df$vs_ENM) %>%
      dplyr::group_by(Time) %>%
      dplyr::do{
        broom::tidy(
```
There is a strong difference among treatments at the 10 minute time point (deduced from Kruskal-Wallis), attributable to the large difference between the ENM and Pulse expressions at this time point (deduced from the post-hoc, Mann-Whitney test).

Further, it was our hypothesis that, temporally, the expression of genes in response to gradual ionic Cu exposure would be more similar to the expressive response to ENM exposure than in a pulse-dosing scenario. This comparison is made using time as a continuous variable, as opposed to a series of discrete tests as before. To test this hypothesis we choose to compare the similarity (overlap) of parameter estimates of a common model form for each treatment. However, since no biologically-relevant, parametric model is available for these data we chose to fit a linear model to the fold control data with time. In order to better meet the assumptions of a linear model (specifically observation independence, uncorrelated residuals), the fold-control data are first transformed to the “lag” (or difference vs. previous time), δ_ϕ.

$$\phi = \text{Fold control}_{xy}$$

$$\delta_\phi = \phi_i - \phi_{i-1}$$

These data are repeatedly bootstrapped to generate empirical distributions of the slope and intercept of a two parameter linear model:

$$\hat{\delta_\phi} = \beta_1 \cdot t + \beta_0$$

We can then qualitatively assess the similarities among the treatments according to this model by comparing the extent of overlap between pairs of bootstrap parameter densities.\(^1\)

NA values entered for t0 (lag not calculable), required to maintain data vector dimensions.
dplyr::select(Treatment:Gene, rep, fold_control, lag) %>%
dplyr::ungroup() %>%
dplyr::filter(!is.na(lag)) # Remove NA values

Get point estimate of model parameters
point_est <- treat_lag %>%
dplyr::group_by(Treatment) %>%
dplyr::do(
 broom::tidy(
 lm(lag ~ Time, data = .)
)
) %>%
select(Treatment:estimate) %>%
ungroup()

Perform 1000 bootstrap estimates
(NB: If rerunning this analysis, this may take some time)
boot_estimates <- data.frame(i = 1:1000) %>%
plyr::ddply(.,.(i), function(df){
 # Create a bootstrap instance of the data by resampling completely with replacement
 resamp <- treat_lag %>%
 dplyr::group_by(Treatment, Time) %>%
 dplyr::slice(sample(1:n(), replace = T))

 # Fit linear model and extract parameters
 resamp_lm <- resamp %>%
 dplyr::group_by(Treatment) %>%
 dplyr::do(
 broom::tidy(
 lm(lag ~ Time, data = .)
)
) %>%
 select(Treatment:estimate)

 return(resamp_lm)
}) %>%
dplyr::mutate(term = factor(term,
 labels = c(bquote(beta[0]~" (Intercept)"),
 bquote(beta[1]~" (Slope)")))
)

param_plt <- ggplot(boot_estimates,
 aes(x = estimate, fill = Treatment)) +
stat_density(position = 'identity',alpha = 0.33, color = 'black') +
facet_wrap(~term, scales = 'free', labeller = label_parsed) +
scale_x_continuous('Parameter estimate') +
scale_y_continuous('Kernel density') +
guides(fill = guide_legend(override.aes = list(alpha = 1)))

print(param_plt)
The higher degree of overlap between estimates of both parameters for ENM and Gradual (vs. Pulse), supports the stated hypothesis that the temporal response of gene expression in response to ionic copper exposure better represents that of ENM exposure than does a pulse exposure. However, our data show also that this means a mild practical difference at later time points, with early responses driving much of the overall difference.