Supporting Information

Hierarchical MoS$_2$ nanosheets on flexible carbon felt as an efficient flow-through electrode for dechlorination

Li-Zhi Huang,*a,b,c Steen Uttrup Pedersen,b,d Emil Tveden Bjerglund, b Paolo Lamagni,b,d Marianne Glasius, b Hans Christian Bruun Hansenc and Kim Daasbjergb,d

a School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, P.R. China

b Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

c Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C, Denmark

d Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
Figure S1. Schematic illustration of the flow cell used in this work.

Figure S2. Photo of the monolith electrodes (30 × 34 × ~4 mm) used in the flow cell.
Figure S3. SEM images of bare carbon felt.

Figure S4. Pore size distribution of carbon felt electrode before (black) and after (blue) growth of MoS$_2$ nanosheets.
Figure S5. TEM images of MoS$_2$ with elemental mapping of Mo+S, Mo, C, and O. The mapping of S is not possible due to its spectrum overlapping with that of Mo.

Figure S6. Mo 3d XPS spectra of MoS$_2$ catalyst on CF.
Figure S7. IC chromatography of (a) standard prepared from commercial available chemicals showing the retention time of TCAA and possible reduction products, (b) inlet of synthetic contaminated water containing 10 µM TCAA, and (c) outlet after flow cell treatment using MoS$_2$ catalyst. The inlet water contain Cl impurities which was subtracted to obtain the produced Cl from TCAA dechlorination. The peak indicated by “*” is an impurity peak from the filter.
Figure S8. XPS survey spectra giving the chemical formula of (a) Co, (b) Fe, (c) Ni, and (d) Cu doped MoS$_2$ on CF electrodes.
Figure S9. STEM-EDS chemical maps of C, O, S, Mo, and other metals in the MoS$_2$ nanosheets doped with (a) Co, (b) Fe, (c) Ni, and (d) Cu. Lengths are in nm.

Figure S10. SEM images of Ni foam.
Figure S11. SEM images of Cu foam.

Figure S12. SEM images of stainless steel foam.

The catalyzed HER follows the reaction scheme:S1

\[\text{H}^+ + \text{e}^- + \text{cat} \rightarrow \text{H}^* - \text{cat} \quad \text{Volmer step} \]

\[2\text{H}^* - \text{cat} \rightarrow \uparrow \text{H}_2 \quad \text{Tafel step} \]

\[\text{H}^* - \text{cat} + \text{H}^+ + \text{e}^- \rightarrow \text{cat} + \uparrow \text{H}_2 \quad \text{Heyrovsky step (in acidic solution)} \]

\[\text{H}^* - \text{cat} + \text{H}_2\text{O} + \text{e}^- \rightarrow \text{cat} + \cdot \text{OH} + \uparrow \text{H}_2 \quad \text{Heyrovsky step (in alkaline solution)} \]

Here “*” denotes a site on the catalyst surface able to bind to hydrogen.
Table S1. DFT Calculations of the Energetics (in eV) of the Electrocatalytic HER on the Surfaces of Different Catalysts.S1

\[
\begin{array}{c}
\text{H-O-H} \rightarrow \text{H-\ldots-OH} \rightarrow \text{H* OH} \rightarrow \text{H*+Cl}_3\text{CCOOH-cat} \rightarrow \text{CH}_3\text{COOH-cat}
\end{array}
\]

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>$\Delta G(H_2O)$</th>
<th>$G(OH)$</th>
<th>$\Delta G(H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS\textsubscript{2}</td>
<td>1.17</td>
<td>-4.95</td>
<td>0.60</td>
</tr>
<tr>
<td>Ni-MoS\textsubscript{2}</td>
<td>0.66</td>
<td>-3.36</td>
<td>-0.07</td>
</tr>
<tr>
<td>Co-MoS\textsubscript{2}</td>
<td>0.76</td>
<td>-3.46</td>
<td>0.13</td>
</tr>
<tr>
<td>Fe-MoS\textsubscript{2}</td>
<td>0.96</td>
<td>-3.46</td>
<td>-0.11</td>
</tr>
</tbody>
</table>

The parameters $\Delta G(H_2O)$ and $\Delta G(H)$ are the kinetic energy barriers for the Volmer ($H^+ + e^- + \text{cat} \rightarrow H^*\text{-cat}$) and Tafel ($2H^*\text{-cat} \rightarrow \uparrow H_2$) steps, respectively, and $G(OH)$ is the Gibbs free energy of the adsorbed $^\ddagger OH$ on the surfaces of catalysts. The symbol “*” denotes a site on the catalyst surface able to bind to hydrogen, while $\text{Cl}_3\text{CCOOH-cat}$ denotes a Cl_3CCOOH molecule adsorbed on the catalyst surface.

Table S2. Equilibrium Mass Distribution Calculated by VMINTEQ.a

<table>
<thead>
<tr>
<th>Component</th>
<th>Total dissolved (mol L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H^+</td>
<td>4.6447×10$^{-7}$</td>
</tr>
<tr>
<td>$\text{HS}^-/\text{S}^{2-}$</td>
<td>1×10$^{-16}$</td>
</tr>
<tr>
<td>Na^+</td>
<td>4×10$^{-3}$</td>
</tr>
<tr>
<td>SO_4^{2-}</td>
<td>2×10$^{-3}$</td>
</tr>
</tbody>
</table>

a The parameters used are: pH is fixed at 6.4, the ionic strength is calculated from the supporting electrolyte of 2 mM Na_2SO_4, and the temperature is 25 °C. Solid “MoS\textsubscript{2}” was added as an infinite solid phase which means that the concentration of the MoS\textsubscript{2} solid is sufficient to maintain equilibrium in the solution at all times.
Reference