Electronic Supporting Information

Effects of Molecular-Weight-Fractionated Natural Organic Matter on the Phytoavailability of Silver Nanoparticles

Min Li,ab Fei Dang,*a Qing-Long Fu,c Dong-Mei Zhouc and Bin Yind

a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
d State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008, China

* Corresponding author, Tel: +86-25-86881179, Fax: +86-25-86881000.
E-mail: fdang@issas.ac.cn.

Summary

11 SI pages containing 2 tables and 7 figures.
22 **Contents**

23 Detailed information of NOM (Table S1) ... page S3

24 The washing efficiencies of two washing methods (Table S2) page S4

25 The linear pattern of total Ag uptake by rice over time (Figure S1) page S5

26 AgNP characterizations (Figure S2) .. page S6

27 TEM images and size distribution of AgNPs incubated with NOM (Figure S3) page S7

28 Hydrodynamic diameters of NOM alone in the exposure medium (Figure S4) page S8

29 Correlation between uptake rates and compositional differences (Figure S5) page S9

30 The chemical structural formulas of the small-NOM models (Figure S6) page S10

31 The effects of the NOM concentration, the NOM fractionation, and the small-NOM models on pH (Figure S7) ... page S11
Table S1 Elemental composition and acidic functional groups of Suwannee River natural organic
matter (NOM) as provided by the International Humic Substance Society (available at

<table>
<thead>
<tr>
<th>Sample</th>
<th>H₂O</th>
<th>Ash<sup>a</sup></th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
<th>S</th>
<th>P</th>
<th>Carboxyl<sup>b</sup></th>
<th>Phenolic<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td>5.69</td>
<td>4.01</td>
<td>50.7</td>
<td>3.97</td>
<td>41.48</td>
<td>1.27</td>
<td>1.78</td>
<td>ND</td>
<td>11.21</td>
<td>2.47</td>
</tr>
</tbody>
</table>

^a: Percentage of inorganic residue (% w/w) in a dry sample.

^b: Charge density (m_{eq} g⁻¹ C) at pH 8.0.

^c: Two times the change in the charge density (m_{eq} g⁻¹ C) between pH 8.0 and pH 10.0.

ND: not determined.
Table S2 Washing efficiencies of two washing methods (HNO$_3$ + L-cysteine and CaCl$_2$). HNO$_3$ + L-cysteine: tissues were soaked thoroughly in Milli-Q water for 10 min, rinsed with 10 mM HNO$_3$, soaked thoroughly in 10 mM of freshly prepared L-cysteine for 20 min, and finally rinsed with Milli-Q water after soaking in AgNP medium for 2 or 10 min. CaCl$_2$: tissues were soaked thoroughly in Milli-Q water for 10 min, 10 mM CaCl$_2$ for 20 min, and finally rinsed with Milli-Q water after soaking in AgNP medium for 2 or 10 min. Exposure medium condition: 10 mg AgNPs L$^{-1}$ in 1/4 Hoagland’s medium (pH 5.6 ± 0.1). The data are presented as the mean ± SD (n = 5).

<table>
<thead>
<tr>
<th></th>
<th>CaCl$_2$ (2 min)</th>
<th>HNO$_3$ + L-cysteine (2 min)</th>
<th>CaCl$_2$ (10 min)</th>
<th>HNO$_3$ + L-cysteine (10 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag in washing solution (µg)</td>
<td>9.32 ± 1.30</td>
<td>12.40 ± 1.89</td>
<td>12.20 ± 2.05</td>
<td>13.88 ± 2.27</td>
</tr>
<tr>
<td>Ag remained in tissue (µg)</td>
<td>3.66 ± 0.82</td>
<td>2.90 ± 0.90</td>
<td>4.31 ± 0.95</td>
<td>2.93 ± 0.66</td>
</tr>
<tr>
<td>Ag removed (%)</td>
<td>72.0 ± 2.00</td>
<td>81.4 ± 2.80</td>
<td>74.1 ± 2.08</td>
<td>82.6 ± 2.22</td>
</tr>
</tbody>
</table>
Figure S1. Linear pattern of the uptake of total Ag by rice over time. The data are presented as the mean ± SD (n = 5). Exposure medium condition: 1 mg AgNPs L$^{-1}$ in 1/4 Hoagland’s medium (pH 5.6 ± 0.1).
Figure S2. Representative transmission electron microscopy (TEM) image (A), high-resolution TEM image (B), particle size distribution (C), number-weighted hydrodynamic diameters (D), UV-Vis spectra (E), and dissolved Ag (Ag_{diss}) concentration (F) of 1 mg AgNPs L$^{-1}$ in 1/4 Hoagland’s medium (pH 5.6 ± 0.1).
Figure S3. Representative TEM images (A, B, and C) and particle size distribution (D) of AgNPs incubated with 80 mg L$^{-1}$ NOM. The AgNP concentration (5 mg L$^{-1}$) was higher than that in the exposure medium to satisfy the detection limit of TEM. Note that particle size distribution were analyzed by 200 well-dispersed nanoparticles with NOM adsorption (as indicated in the selected particles), while particles associated with large NOM aggregates were not considered.
Figure S4. Number-weighted hydrodynamic diameters of NOM alone in the exposure medium: 1/4 Hoagland solution at pH 5.6. Samples were prepared using unfractionated NOM ranging from 10 to 80 mg L$^{-1}$. The data are presented as the mean ± SD (n = 5).
Figure S5. Correlation between total Ag uptake and the compositional differences in the NOM fractions. A: specific ultraviolet absorbance at 280 nm (SUVA$_{280}$), B: aromaticity, C: [TOC] × SUVA$_{280}$, D: peak A intensity in the excitation-emission matrix spectra (EEMs), E: peak B intensity in the EEMs, F: [TOC] × intensity of peak A in EEMs, G: [TOC] × intensity of peak B in EEMs.
Figure S6. Chemical structural formulas of small-NOM models.

- L-cysteine
- L-serine
- Malic acid
- Citric acid
Figure S7. Effects of NOM concentration (A), NOM fractionation (B), and small-NOM models (C) on the pH of the exposure medium. Exposure medium condition: 1 mg AgNPs L\(^{-1}\) in 1/4 Hoagland’s medium (pH 5.6 ± 0.1). The data are presented as the mean ± SD (n = 5).