Supplementary material

Fluorescence quotient of excitation–emission matrices as a potential indicator of organic matter behavior in membrane bioreactors

Kang Xiaoa,b, Shuai Lianga,c,*, Aihua Xiaoc, Ting Leib, Jihua Tana,
Xiaomao Wangb, Xia Huangb,**

a College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
b State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
c College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China

Environmental Science: Water Research & Technology

*Corresponding author, Tel: (+86-10) 62336675; E-mail: shuai_liang@bjfu.edu.cn

**Corresponding author, Tel: (+86-10) 62772324; E-mail: xhuang@tsinghua.edu.cn
Fig. S1. Process flow of the full-scale MBR plant.

Fig. S2. Variation of membrane permeability (ratio of flux to trans-membrane pressure) and liquid temperature during the sampling period (~6 months). The 8 times of samplings are labelled in order in the figure.
Fig. S4. Statistically significant regions for positive and negative FQs between different kinds of organic matter from another full-scale MBR plant, according to Wilcoxon signed rank test. The plant had a capacity of 35000 m³/d treating municipal wastewater in Beijing. Its process was also anaerobic/anoxic/aerobic-MBR, which was equipped with two types of 0.1-µm PVDF hollow fiber membrane modules. The plant had been stably operated for over two years with a total HRT of ~40–41 h and an SRT of ~25–30 d.