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Figure S1 Disorder prediction plots

PEST Wt
A 1.00 -
-
0.75-
050l = = = - — - - - - -
—— Disprot (VSL2)
— |[UPRED
0.25+ —— Pdisorder
—— RONN
— MetaDisorderMD
0.00 r T r T T
0 15 30 45 60 75
B PEST M1
1.00+
>
‘:’ 0.75-
S o
°
c
L
2 050d= = = = = - - - —_— - -
[
°
| 8
o
n
O 0.25-
0.00 T T T T T
0 15 30 45 60 75

0.25-

0.00 T T T T T
0 30 60 90 120 150

Residue position

Figure S1: Intrinsic disorder prediction plots of the proteins for [A] PEST Wt; [B] PEST
M1 and [C] DHNTI as obtained by various predictors. Disorder prediction was determined
using Genesilico MetaDisorder server. (L. P. Kozlowski and J. M. Bujnicki, BMC
Bioinformatics, 2012, 13, 111.)
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Figure S2 Purification of PEST Wt and PEST M1
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Figure S2: 15 % Reducing SDS-PAGE showing a single band of purified proteins for [A] PEST Wt and
[B] PEST MI1. Apparent molecular weight of PEST proteins on SDS-PAGE is approximately 15 kDa
because of its anomalous mobility.
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Figure S3 Mass Spectra of PEST Wt and PEST M1
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Figure S3: Mass spectra of [A] PEST Wt and [B] PEST M1. The mass calculated from sequence were
8341.61 and 8527.82 Da.
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Figure S4 Purification of DHN1
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Figure S4: 15% Reducing SDS-PAGE shows the single band of purified DHN1 at 19 kDa.
Higher molecular weight of DHN1 on SDS-PAGE is observed due to its anomalous
mobility.
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Figure S5 Mass Spectrum of DHN1
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Figure S5: Mass spectrum of Dehydrin (DHN1). The mass calculated from sequence was
16955.33 Da.
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Figure S6 Comparison of absorption spectra with simulated scatter
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Figure S6: Comparision of absorbance spectra with simulated Rayleigh scatter (using 1/A*
dependence) for [A] PEST Wt; [B] PEST M1; [C] DHNI1 and [D] HEWL aggregate formed in Glycine

buffer (pH 2.0).

Page 8 of 19



Protein Charge Transfer Absorption Spectra: An Intrinsic Probe to Monitor Structural and Oligomeric Transitions in Proteins,
Ansari et. al., Submitted to Faraday Discussions in September 2017

Figure S7 PEST Wt, PEST M1 and DHNI1 exist as a monomer in

solution
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Figure S7: Variation of ProCharTS absorbance with protein concentration for [A] PEST
Wt; [B] PEST M1 and [C] DHNI at chosen wavelengths.
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Figure S8 Absorption spectrum of DHN1 in 0.1 N NaOH
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Figure S8: Absorption spectrum of DHN1 in 0.1 N NaOH. Inset shows DHN1 spectrum after
subtracting contribution of Phe and Tyr (260 to 326 nm).
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Figure S9 Percent change in absorbance at different pH with

respect to pH 7
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Figure S9: Percent change in absorption intensity measured every 25 nm at specified pH among the
proteins [A] PEST Wt; [B] PEST M1; [C] DHNI1 and [D] o3C with respect to pH 7. The change in
absorbance at selected wavelengths were calculated as [(Absorbance at chosen pH — Absorbance at pH
7)/Absorbance at pH 7]x100.
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Figure S10 Secondary structure content of PEST Wt and M1 at
various pH
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Figure S10: Change in secondary structure content in [A] PEST Wt and
[B] PEST M1 at various pH and in deionized water.
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Figure S11 Fitted CD Spectra of PEST Wt and M1 at various pH

>

PEST Wt pH 3

PEST Wt pH 9

T 5 T
° experinental data experinental data
[ X reconstructed data —+— 1 ) reconstructed data —*—
o 'T \ difference (exp - recon) 8 ‘difference {exp - recon) *:‘
] EY il
a_"\f" RN i _5_\ M»WM |
) \
/ 1 * !
/ \ 1 \ wH*
X */‘ \ -
2 A # W -10
3 K] \;‘ ‘)'R(x
TSt i\ K A 4
3 R w 515 ¥ <
¥ .3
z ¥ ¥ \ o
5 % v 5 -20 \ J
g-tof \ g /
3 4 ) 2 -25
5 x # ki
i ) # £
= b F
z ) / ~ -38
o b # ., /
S -5 A\ ¥ -
2 8 2
13 ¥ £ -35 /
N ¥
LN * - :
-20 F S i 40 % ){
w ¥ " 4
fur” TR -a5 V‘»/f
-25 s s . n -50 L L s s
198 200 218 220 230 240 190 200 210 220 230 248
Havelength Mavelength
5 T T T 10 T T T
experinental data experinental data
reconstructed data * reconstructed data —*
L £ difference {(exp - recon) My difference {exp - recon)
[ \
\ el L. 1
ol \r,\‘ ‘ X -
\ o
\ \ IR g
& "\ & X ‘M
3 " 2 \ "
. i) ¢ . ; /‘2‘
~ () ~ %
% - . 3 8 ) X
E- { ¥ o % ¥
E \ * g
\ 7
g “ s g -20
-1 * 1
5 \ a 5
3 % # £
= -16 A F =
= »& v =
3 ¢ 8 -30
8 ‘ Va 2 F
= = /
= \ 4 = /
Y *
15 'r,* X \ }{
-15 ¥ \
* -48 ’i
P \ )‘
¥ s
e W
e
% #7
*eert . . . .
=20 oL =58
198 200 218 228 238 248 198 200 210 228 238 248
Havelength Havelength

Figure S11: Fitted CD spectra of [A] PEST Wt and [B] PEST M1 by using DichroWeb server at

pH 3 and 9.
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Figure S12 CD spectra of DHN1 and a;C at various pH
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Figure S12: CD spectra of [A] 12.5 uM DHNI and [B] 30 uM a3C at various pH.

Page 14 of 19



Protein Charge Transfer Absorption Spectra: An Intrinsic Probe to Monitor Structural and Oligomeric Transitions in Proteins,
Ansari et. al., Submitted to Faraday Discussions in September 2017

Figure S13 Percent change in absorbance at different temperatures
with respect to room temperature (25 °C)

A PEST Wt
350

250
150

501

-50

250 350 450 550 650 750

s50.. PEST M1
()]
o
& 250
S —m— 25 °C (initial) to 85 °C
o —e— 25 °C (initial) to 65 °C
£ 150 —a— 25 °C (initial) to 45 °C
Kol
S —v— 25 °C (initial) to 25 °C
< % (after cooling)
X

50, .

250 350 450 550 650 750
DHN1

(@

350 1

2501

150

50

= 0 T lJ T T T T
%0 3% a0 s ek 780

Wavelength (nm)
Figure S13: Percent change in absorption intensity measured every 25 nm at specified
temperature among the proteins [A] PEST Wt; [B] PEST M1 and [C] DHNI with
respect to room temperature (25 °C). The change in absorbance at selected wavelengths

were calculated as [(Absorbance at chosen temperature — Absorbance at
25°C)/Absorbance at 25 °C]x100.

Page 15 of 19



Protein Charge Transfer Absorption Spectra: An Intrinsic Probe to Monitor Structural and Oligomeric Transitions in Proteins,
Ansari et. al., Submitted to Faraday Discussions in September 2017

Figure S14 Secondary structure content of PEST Wt and M1 at
various temperatures
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Figure S14: Change in secondary structure content in [A] PEST Wt and
[B] PEST M1 at different temperatures.
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Figure S15 Fitted CD Spectra of PEST Wt and M1 at various
temperatures
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Figure S15: Fitted CD spectra of [A] PEST Wt and [B] PEST M1 by using DichroWeb server at
25 and 85 °C.
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Figure S16 Percent change in absorbance with NaCl and KCl with
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Figure S16: Percent change in absorption intensity measured at 25 nm intervals among the proteins
[A] PEST Wt; [B] PEST M1; [C] DHNI and [D] o3C in 250 mM NaCl and 250 mM KCI with
respect to absorption of proteins in deionised water. The change in absorbance were calculated at
selected wavelengths as [(Absorbance in salt — Absorbance in water)/Absorbance in water]x100.
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Figure S17 Concentration dependence of ProCharTS on
concentration of HEWL aggregates
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Figure S17: ProCharTS of HEWL aggregates formed at pH 12.2: Difference absorption
spectra of 10 day old HEWL aggregates for different monomer concentrations is shown. All
absorbance measurements were done immediately after transfer in 0.1 M sodium bicarbonate
buffer (pH 9.3). Difference spectra are generated by subtracting the spectra of fresh HEWL
monomer of same concentration in the same buffer as the transferred aggregates.
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