Supporting Information

A Facile Synthesis of Copper Nanoparticles Supported on Ordered Mesoporous Polymer as an Efficient and Stable Catalyst for Solvent-Free Sonogashira Coupling Reactions

Kaixuan Wang,‡a Liping Yang,‡a Weiliang Zhao,ª Linqing Cao,ª Zhenliang Sun*b and Fang Zhang*ª

ª The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China

b Shanghai Jiaotong University Affiliated Sixth People’s Hospital, South Campus, Shanghai 201499, P. R. China
Table S1 Catalytic performances of the use of different amounts of CuNPs@MP-3 catalyst^a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (mol%)</th>
<th>Base</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.50</td>
<td>TEA</td>
<td>40</td>
<td>8</td>
<td>56.6</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
<td>TEA</td>
<td>40</td>
<td>8</td>
<td>82.3</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>TEA</td>
<td>40</td>
<td>8</td>
<td>96.0</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>TEA</td>
<td>40</td>
<td>8</td>
<td>99.0</td>
</tr>
</tbody>
</table>

^a Reaction conditions: phenylacetylene (0.50 mmol), benzoyl chloride (0.75 mmol), Et₃N (1.5 mmol), N₂ atmosphere.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Base</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu NPs@MP-3</td>
<td>TEA</td>
<td>40</td>
<td>2</td>
<td>36.6</td>
</tr>
<tr>
<td>2</td>
<td>Cu NPs@MP-3</td>
<td>TEA</td>
<td>40</td>
<td>4</td>
<td>58.6</td>
</tr>
<tr>
<td>3</td>
<td>Cu NPs@MP-3</td>
<td>TEA</td>
<td>40</td>
<td>6</td>
<td>86.2</td>
</tr>
<tr>
<td>4</td>
<td>Cu NPs@MP-3</td>
<td>TEA</td>
<td>40</td>
<td>8</td>
<td>96.0</td>
</tr>
<tr>
<td>5</td>
<td>Cu NPs@MP-3</td>
<td>TEA</td>
<td>40</td>
<td>10</td>
<td>99.0</td>
</tr>
</tbody>
</table>

a Reaction conditions: phenylacetylene (0.50 mmol), benzoyl chloride (0.75 mmol), 1.0 mol% catalyst, Et₃N (1.5 mmol), N₂ atmosphere.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Base amount (mmol)</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na$_2$CO$_3$</td>
<td>1.5</td>
<td>40</td>
<td>8</td>
<td>n.r.</td>
</tr>
<tr>
<td>2</td>
<td>i-Pr$_2$NEt</td>
<td>1.5</td>
<td>40</td>
<td>8</td>
<td>28.0</td>
</tr>
<tr>
<td>3</td>
<td>Pyridine</td>
<td>1.5</td>
<td>40</td>
<td>8</td>
<td>42.0</td>
</tr>
<tr>
<td>4</td>
<td>TEA</td>
<td>1.5</td>
<td>40</td>
<td>8</td>
<td>96.0</td>
</tr>
<tr>
<td>5</td>
<td>TEA</td>
<td>0.5</td>
<td>40</td>
<td>8</td>
<td>58.0</td>
</tr>
<tr>
<td>6</td>
<td>TEA</td>
<td>1.0</td>
<td>40</td>
<td>8</td>
<td>81.0</td>
</tr>
</tbody>
</table>

Reaction conditions: phenylacetylene (0.50 mmol), benzoyl chloride (0.75 mmol), 1.0 mol%Cu NPs@MP-3, N$_2$ atmosphere.
Table S4 Catalytic performances of Cu NPs@MP-3 catalyst with different reaction temperaturesa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Base</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu NPs@MP-3</td>
<td>TEA</td>
<td>20</td>
<td>8</td>
<td>28.0</td>
</tr>
<tr>
<td>2</td>
<td>Cu NPs@MP-3</td>
<td>TEA</td>
<td>30</td>
<td>8</td>
<td>62.0</td>
</tr>
<tr>
<td>3</td>
<td>Cu NPs@MP-3</td>
<td>TEA</td>
<td>40</td>
<td>8</td>
<td>96.0</td>
</tr>
</tbody>
</table>

aReaction conditions: phenylacetylene (0.5 mmol), benzoyl chloride (0.75 mmol), 1.0 mol% catalyst, Et$_3$N (1.5 mmol), N$_2$ atmosphere.
Figure S1 TEM image of the commercial Cu powder.
Figure S2 XRD pattern of Cu NPs@SBA-15.
Figure S3 TEM picture of Cu NPs@SBA-15.
Figure S4 N₂ sorption isotherm of Cu NPs@SBA-15.
Figure S5 FT-IR spectrum of Cu NPs@TMS-SBA-15 sample.
Figure S6 XRD pattern of the recycled Cu NPs@MP-3 after ten repetitions.
Figure S7 N$_2$ sorption isotherm of the recycled Cu NPs@MP-3 after ten repetitions.
Figure S8 TEM image of the recycled Cu NPs@MP-3 catalyst after ten runs.