Supporting Information

Carboxylate-promoted reductive functionalization of CO₂ with amine and hydrosilane under mild conditions

Xiao-Fang Liu, Chang Qiao, Xiao-Ya Li, Liang-Nian He*

* State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University

Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017
Table of Contents

1. General Experimental Section ...S2

2. Cesium Formate-Catalyzed Hydrosilation of CO$_2$ in the Absence of Amines ...S3

3. Experimental procedure for reductive functionalization of CO$_2$ with aniline to N-methylaniline and N,N-methylaniline.................. S4

4. Characterization Data for the Products and Aminal Intermediate………………………………………………………………….S5

5. NMR Spectral Copies of the Products and Aminal Intermediate..S9
1. General Experimental Section

The starting materials were commercially available and were used without further purification except solvents. The products were isolated by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90 °C) and ethyl acetate. All compounds were characterized by 1H NMR, 13C NMR and mass spectroscopy, which are consistent with those reported in the literature. NMR spectra were determined on Bruker 400 in CDCl$_3$ or C$_6$D$_6$. 1H NMR spectra was recorded on 400 MHz spectrometers using CDCl$_3$ as solvent referenced to tetramethylsilane (TMS, 0 ppm). The 13C NMR chemical shifts were reported in ppm relative to the carbon resonance of CDCl$_3$ (central peak is 77.0 ppm). 1H NMR peaks are labeled as singlet (s), doublet (d), triplet (t), and multiplet (m). The coupling constants, J, are reported in Hertz (Hz). GC-MS data were performed on Finnigan HP G1800 A. GC analyses were performed on a Shimadzu GC-2014 equipped with a capillary column (RTX-17 30 m × 0.25 μm) using a flame ionization detector.
2. Cesium formate-catalyzed hydrosilation of CO$_2$ in the absence of amines

$$\text{CO}_2 + \text{Ph}_2\text{SiH}_2 \xrightarrow{\text{HCOOCs, CH}_3\text{CN, 50 °C}} \text{HCOO}[\text{Si}] + [\text{SiOCH}_2\text{O}[\text{Si}] + \text{CH}_3\text{O}[\text{Si}]]$$

Under inert atmosphere (Ar), a 10 mL Schlenk flask was charged with cesium formate (2.3 mg), diphenylsilane (186 μL, 1 mmol) and CH$_3$CN (2 mL) successfully. The reaction mixture was stirred at 50 °C under an atmosphere of CO$_2$ (99.999%, balloon). Samples were taken for the desired time (6 h) to be analyzed through 1H NMR. It was found that diphenylsilane (4.90 ppm) was consumed in 6 h, giving rise to peaks at ~8.1, ~5.5 and ~3.5 ppm, indicative of CO$_2$ reduction to silyl formates, silyl acetals and silyl methoxides.\(^1\)

3. Experimental procedure for reductive functionalization of CO\textsubscript{2} with aniline to \textit{N}-methylaniline and \textit{N},\textit{N}-methylaniline

Under inert atmosphere (Ar), a 50 mL Schlenk flask was charged successively with cesium formate (9.2 mg, 5 mol\% relative to amine), aniline (1 mmol), diphenylsilane (744 μL, 4 mmol) and CH\textsubscript{3}CN (8 mL). The reaction mixture was stirred at 50 °C for 6 h under an atmosphere of CO\textsubscript{2} (99.999%, balloon). After the reaction, the reaction mixture was concentrated and purified by silica gel column chromatography (petroleum ether-EtOAc). \textit{N}-methylaniline was obtained with 21\% isolated yield, and \textit{N},\textit{N}-methylaniline were with 28\% yield. The spectrum of \textit{N}-methylaniline are as below: \textit{1H} NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.18 (t, \(J = 7.8\) Hz, 2H), 6.70 (t, \(J = 7.3\) Hz, 1H), 6.60 (d, \(J = 8.2\) Hz, 2H), 3.63 (s, 1H), 2.81 (s, 3H). \textit{13C} NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 149.25, 129.14, 117.18, 112.36, 30.66.
4. Characterization Data for the Products

\[\text{N,N-Dimethylaniline} \]

Yellow oil. \(^1\)H NMR (400 MHz, CDCl\(_3\), 25°C, TMS) \(\delta\) 7.24 (dd, \(J = 8.8,\ 7.3\ \text{Hz},\ 2\text{H})\), 6.85 – 6.62 (m, 3H), 2.94 (s, 6H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\), 25°C, TMS) \(\delta\) 150.58, 129.03, 116.60, 112.62, 40.61. GC-MS (EI, 70 eV) m/z (%) 121.15 (81.29), 120.15 (100.00), 77.05 (29.56).

\[\text{4-Methoxy-N,N-dimethylaniline} \]

White solid. \(^1\)H NMR (400 MHz, CDCl\(_3\), 25°C, TMS) \(\delta\) 6.88 – 6.81 (m, 2H), 6.79 – 6.72 (m, 2H), 3.76 (s, 3H), 2.86 (s, 6H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\), 25°C, TMS) \(\delta\) 152.12, 145.52, 115.04, 114.60, 55.72, 41.92. GC-MS (EI, 70 eV) m/z (%) 151.25 (59.49), 136.20 (100.00).

\[\text{N,N-Dimethyl-p-toluidine} \]

Yellow oil. \(^1\)H NMR (400 MHz, CDCl\(_3\), 25°C, TMS) \(\delta\) 7.05 (d, \(J = 8.1\ \text{Hz},\ 2\text{H})\), 6.69 (d, \(J = 8.2\ \text{Hz},\ 2\text{H})\), 2.89 (s, 6H), 2.25 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\), 25°C, 100.00).
4-Chloro-N,N-dimethylaniline

Yellow oil. 1H NMR (400 MHz, CDCl$_3$, 25°C, TMS) δ 7.17 (d, J = 8.9 Hz, 2H), 6.64 (d, J = 8.7 Hz, 2H), 2.92 (s, 6H). 13C NMR (101 MHz, CDCl$_3$, 25°C, TMS) δ 149.10, 128.75, 121.36, 113.59, 40.64. GC-MS (EI, 70 eV) m/z (%) 157.10 (25.27), 156.10 (39.00), 155.10 (82.99), 154.10 (100.00).

N-allyl-N-methylaniline

Yellow oil. 1H NMR (400 MHz, CDCl$_3$, 25°C, TMS) δ 7.25 – 7.20 (m, 2H), 6.74 – 6.68 (m, 3H), 5.89 – 5.80 (m, 1H), 5.18 – 5.13 (m, 2H), 3.92 (d, J = 4.9 Hz, 2H), 2.93 (s, 3H). 13C NMR (101 MHz, CDCl$_3$, 25°C, TMS) δ 149.43, 133.75, 129.07, 116.36, 116.12, 112.40, 55.23, 37.97. HRMS (ESI, m/z) calcd. For C$_{10}$H$_{13}$N [M+H]$^+$: 148.1126, found: 148.1122.
N-isopropyl-N-methylaniline

Yellow liquid. 1H NMR (400 MHz, CDCl$_3$) δ 7.22 (t, $J = 7.9$ Hz, 2H), 6.79 (d, $J = 8.2$ Hz, 2H), 6.69 (t, $J = 7.2$ Hz, 1H), 4.18 – 3.96 (m, 1H), 2.72 (s, 3H), 1.15 (d, $J = 6.6$ Hz, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 150.10, 129.07, 116.38, 113.28, 48.87, 29.75, 19.26.

1-Methylpiperidine

Colourless oil. 1H NMR (400 MHz, CDCl$_3$, 25°C, TMS) δ 2.33 (s, 4H), 2.24 (s, 3H), 1.68 – 1.51 (m, 4H), 1.41 (s, 2H). 13C NMR (101 MHz, CDCl$_3$, 25°C, TMS) δ 56.46, 46.86, 25.95, 23.70. GC-MS (EI, 70 eV) m/z (%) 99.15 (42.36), 98.15 (100.00), 71.10 (22.54).

4-methylmorpholine

Colourless oil. 1H NMR (400 MHz, CDCl$_3$, 25°C, TMS) δ 3.80 – 3.61 (m, 4H), 2.41 (s, 4H), 2.29 (s, 3H). 13C NMR (101 MHz, CDCl$_3$, 25°C, TMS) δ 66.67, 55.20, 46.23. GC-MS (EI, 70 eV) m/z (%) 101.15 (100.00), 100.15 (36.36), 71.10 (60.10).

4-Bromo-N,N-dimethylaniline
White solid. 1H NMR (400 MHz, CDCl$_3$, 25°C, TMS) δ 7.30 (d, $J = 9.1$ Hz, 2H), 6.59 (d, $J = 8.8$ Hz, 2H), 2.92 (s, 6H). 13C NMR (101 MHz, CDCl$_3$, 25°C, TMS) δ 56.46, 46.86, 25.95, 23.70. 13C NMR (101 MHz, CDCl$_3$) δ 149.46, 131.64, 114.06, 108.45, 40.53. GC-MS (EI, 70 eV) m/z (%) 201.00 (93.41), 200.00 (100.00), 199.00 (99.32), 198.00 (97.76), 118.15 (45.22), 77.10 (20.98).

![Structure of N,N-dimethylcyclohexanamine](image)

N,N-dimethylcyclohexanamine

Colourless oil. 1H NMR (400 MHz, CDCl$_3$, 25°C, TMS) δ 2.27 (s, 6H), 2.14 – 2.10 (m, 1H), 1.86 – 1.76 (m, 4H), 1.68 – 1.55 (m, 1H), 1.26 – 1.09 (m, 5H). 13C NMR (101 MHz, CDCl$_3$, 25°C, TMS) δ 63.60, 41.43, 28.82, 26.14, 25.60. GC-MS (EI, 70 eV) 127.20 (26.01), 84.15 (100.00), 71.10 (21.41).

![Structure of N,N'-dimethyl-N,N'-diphenylmethanedianine](image)

N,N'-dimethyl-N,N'-diphenylmethanedianine

Colourless liquid. 1H NMR (400 MHz, CDCl$_3$) δ 7.25 (dd, $J = 8.6, 7.4$ Hz, 4H), 6.84 (d, $J = 8.1$ Hz, 4H), 6.78 (t, $J = 7.3$ Hz, 2H), 4.76 (s, 2H), 2.87 (s, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 149.31, 129.27, 117.86, 113.76, 70.44, 36.31. GC-MS (EI, 70 eV) m/z (%) 226.20 (2.83), 121.15 (16.02), 120.15 (100.00), 107.15 (61.88), 106.15 (71.81), 79.10 (21.17), 77.10 (39.67).
4. NMR Spectral Copies of the Products