Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

De Soete et al., 2017, Green Chemistry: ESI1

				Years						Citations		
TAG	Criterion	Authors	Year	Published	Publication Type	Topic	Impact Assessment Method	System Boundary	Citations	per year	Journal (ISO)	IF Q
1 1	Sustainability Assessment of	Wernet et al.	2009	8	Methodological framework	Bridging data gaps in environmental assessments: Modeling impacts of	LCA, midpoints covered	Cradle-to-Gate	34	4	Green Chem.	8.30 Q1
	Pharmaceuticals				with case study	fine and basic chemical production						
2 1	Sustainability Assessment of	Jiménez-González et al.	2010	7	Review with	Bioprocesses: Modeling needs for process evaluation and sustainability	Process Analysis and LCA	Cradle-to-Gate	27	4	Comput. Chem. Eng.	2.87 Q1
	Pharmaceuticals				recommendations	assessment						
3 1	Sustainability Assessment of	Schneider et al.	2010	7	Review	Pharmaceutical companies and sustainability: an analysis of corporate	toolbox of social responsibility	N/A	8	1	Benchmark Int J	N/A N/A
4 4	Pharmaceuticals	Parkers Caradian at al.	2011-	0	Daniel and the second	reporting	reporting	December 1	102	12	O D D D	2.52.04
4 1	Sustainability Assessment of	Jiménez-González et al.	2011a	8	Perspective with recommendations	Using the Right Green Yardstick: Why Process Mass Intensity Is Used in the Pharmaceutical Industry To Drive More Sustainable Processes	Green Chemistry toolbox	Process Level	102	13	Org. Process Res. Dev.	2.53 Q1
5 1	Pharmaceuticals Sustainability Assessment of	Jiménez-González et al.	2013	4	Methodological framework	Expanding the Boundaries: Developing a Streamlined Tool for Eco-	PMI + LCA	Cradle-to-Gate	19	5	Org. Process Res. Dev.	2.54 01
J 1	Pharmaceuticals	Jillenez Gonzalez et al.	2013	7	Wicthodological framework	Footprinting of Pharmaceuticals	TWI - ECA	cradic to date	13	3	Org. Process Nes. Dev.	2.54 Q1
6 1	Sustainability Assessment of	De Soete et al.	2013	4	Case study	Exergetic sustainability assessment of batch versus continuous wet	Combining RE at process level and	Cradle-to-Gate	6	2	Green Chem.	8.30 Q1
	Pharmaceuticals				•	granulation based pharmaceutical tablet manufacturing: a cohesive	LCA (CEENE)					
						analysis at three different levels	,					
7 1	Sustainability Assessment of	Woodley et al.	2013	4	Perspective with	A future perspective on the role of industrial biotechnology for	N/A	N/A	9	2	Chem. Eng. Res. Des.	2.53 Q2
	Pharmaceuticals				recommendations	chemicals production						
8 1	Sustainability Assessment of	Szekely et al.	2014	3	Case study	Sustainability assessment of organic solvent nanofiltration: from	CF	Cradle-to-Grave	15	5	Green Chem.	8.30 Q1
	Pharmaceuticals					fabrication to application				_	"	
9 2	Sustainability Assessment in	Briggs et al.	2003	14	Case study	Environmental pollution and the global burden of disease	Health Economics combined with LCA	Cradle-to-Grave	71	5	Br. Med. Bull.	4.42 Q1
10 2	Healthcare Sustainability Assessment in	Martin et al.	2009	0	Case study	Cost-effectiveness of infant vaccination with RIX4414 (Rotarix™) in the	Health Economics combined with LCA	Cradle to Grave	22	3	Vaccines	3.62 Q2
10 2	Healthcare	ividi tili et di.	2009	0	Case study	UK	nealth economics combined with ECA	Craule-10-Grave	23	3	vaccines	3.02 Q2
11 2	Sustainability Assessment in	Boholm et al.	2014	3	Case study	Controversy over antibacterial silver: implications for environmental and	RA. MCA. I CA	Cradle-to-Grave	3	1	J. Clean Prod.	4.17 Q1
	Healthcare	Donomi ee an	201.	J	ause staay	sustainability assessments	,	craule to crave	•	-	31 G.Ca 1 Ca.	👊
12 2	Sustainability Assessment in	Carmen Carnero	2015	2	Methodological framework	Assessment of Environmental Sustainability in Health Care Organizations	MCA (CF, material use, toxicity,	Cradle-to-Grave	1	1	Sustainability	0.94 Q3
	Healthcare				with case study	Assessment of Environmental Sustainability in Health Care Organizations	biodiversity, waste)				•	
13 2	Sustainability Assessment in	Castro et al. (a)	2015	2	Review	A critical analysis of building sustainability assessment methods for	BSA	Cradle-to-Cradle	1	1	Environment,	0.91 Q2
	Healthcare					healthcare buildings					Development and	
						· ·					Sustainability	
14 2	Sustainability Assessment in	Castro et al. (b)	2015	2	Benchmarking	Development of Benchmarks for Operating Costs and Resources	Resource consumption, BSA	Cradle-to-Cradle	0	0	Sustainability	0.94 Q3
	Healthcare					Consumption to be Used in Healthcare Building Sustainability						
15 2	Custoinability Assassment in	Dobovovo et al	2016	1	Mothodological framowark	Assessment Methods Human health benefits and burdens of a pharmaceutical treatment:	Health Economics combined with LCA	Cradla to Crava	0	0	Environ. Res.	4.37 Q1
15 2	Sustainability Assessment in Healthcare	Debaveye et al.	2016	1	Methodological framework	Discussion of a conceptual integrated approach	Health Economics combined with LCA	Craule-10-Grave	U	U	Environ. Res.	4.37 Q1
16 2	Sustainability Assessment in	Marsch et al.	2016	1	Methodological framework	Expanding Health Technology Assessments to Include Effects on the	Health Economics combined with LCA	Cradle-to-Grave	0	0	Value in Health	3.37 Q1
10 2	Healthcare	Warsen et al.	2010	-	Wethodological framework	Environment	Treath Economics combined with Econ	cradic to Grave	Ü	Ü	value in riculti	3.37 Q1
17 3	Life Cycle Assessment of	Jiménez-González et al.	2000	17	PhD Thesis	Life Code Assessment in Dhamasassatised Applications	Green Chemistry + LCA Toolbox	Cradle-to-Gate	N/A	N/A	N/A	N/A N/A
	Pharmaceuticals					Life Cycle Assessment in Pharmaceutical Applications						
18 3	Life Cycle Assessment of	Jiménez-González et al.	2004	13	Case study	Cradle-to-gate life cycle inventory and assessment of pharmaceutical	LCA, most midpoints covered	Gate-to-Gate	79	6	Int. J. Life Cycle Assess.	4.38 Q1
	Pharmaceuticals					compounds						
19 3	Life Cycle Assessment of	Curzons et al.	2007	10	Methodological framework	Fast life cycle assessment of synthetic chemistry (FLASC™) tool	FLASC™, process-oriented metrics	Cradle-to-Gate	42	4	Int. J. Life Cycle Assess.	4.38 Q1
20 0	Pharmaceuticals	ve	2000			, , , , , ,	51.45074		40			
20 3	Life Cycle Assessment of	Kim et al.	2009	8	Methodological framework	Enzymes for pharmaceutical applications-a cradle-to-gate life cycle		Cradle-to-Grave	19	2	Int. J. Life Cycle Assess.	4.38 Q1
	Pharmaceuticals				with case study	assessment	consumption, global warming, acidification, eutrophication, and					
						ussessment	photochemical smog formation					
21 3	Life Cycle Assessment of	Wernet et al.	2010	7	Case study	Life cycle assessment of fine chemical production: a case study of	CED, GWP, EI99, ES2006, TRACI	Cradle-to-Gate	38	5	Int. J. Life Cycle Assess.	4.38 Q1
	Pharmaceuticals				,	pharmaceutical synthesis	, , , , , , , , , , , , , , , , , , , ,					•
22 3	Life Cycle Assessment of	Igos et al.	2012	5	Benchmarking	Is it better to remove pharmaceuticals in decentralized or conventional	LCA, most midpoints covered	Cradle-to-Grave	9	2	Sci. Total Environ.	4.41 Q1
	Pharmaceuticals					wastewater treatment plants? A life cycle assessment comparison						
23 3	Life Cycle Assessment of	Alfonsín et al.	2014	3	Methodological framework	PPCPs in wastewater – Update and calculation of characterization	USEtox and USES-LCA 2.0	Gate-to-Cradle	1	0	J. Clean Prod.	4.17 Q1
	Pharmaceuticals				with case study	factors for their inclusion in LCA studies						
24 3	Life Cycle Assessment of	De Soete et al.	2014	3	Methodological framework	Environmental Sustainability Assessments of Pharmaceuticals: An	Combining resource efficiency at	Cradle-to-Gate	0	0	Environ. Sci. Technol.	6.33 Q1
25 2	Pharmaceuticals	limános Caradlas at al	2014	2	with case study	Emerging Need for Simplification in Life Cycle Assessments The evolution of life cycle assessment in pharmaceutical and chemical	process level and LCA (CEENE)	Cradle to Cata	-	2	Croon Chare	0.20 01
25 3	Life Cycle Assessment of Pharmaceuticals	Jiménez-González et al.	2014	3	Review	applications - a perspective	LCA, midpoints covered	Cradle-to-Gate	5	2	Green Chem.	8.30 Q1
26 3	Life Cycle Assessment of	Perez-Lopez et al.	2014	3	Case study		LCA	Cradle-to-Gate	4	1	J. Clean Prod.	4.17 Q1
20 3	Pharmaceuticals	i ci cz topcz et ai.	2014	3	Sase study	Tetraselmis suecica at pilot scale		Gradic to-Gate	7	_	J. Cicuii i iou.	QI

27 3	Life Cycle Assessment of Pharmaceuticals	Brunet et al.	2014	3	Methodological framework with case study	Combined simulation-optimization methodology to reduce the environmental impact of pharmaceutical processes: application to the	Combining process analysis and LCA (CML + E199)	Cradle-to-Gate	1	0	J. Clean Prod.	4.17 Q1
28 3	Life Cycle Assessment of	Ramasamy et al.	2014	3	Review with	production of Penicillin V Life cycle assessment as a tool to support decisionmaking in the	LCA	Cradle-to-Gate	0	0	Food Bioprod. Process	2.82 Q2
29 3	Pharmaceuticals Life Cycle Assessment of Pharmaceuticals	Ott et al.	2014	3	recommendations Case study	biopharmaceutical industry: Considerations and challenges Life Cycle Analysis within Pharmaceutical Process Optimization and Intensification: Case Study of Active Pharmaceutical Ingredient	Combining process analysis and LCA (ReCiPe)	Cradle-to-Gate	3	1	ChemSusChem	8.65 Q1
30 3	Life Cycle Assessment of	Ott et al.	2015	2	Case study	Production Life cycle assessment of multi-step rufinamide synthesis – from isolated	Combining process analysis and LCA	Cradle-to-Gate	0	0	Green Chem.	8.30 Q1
31 3	Pharmaceuticals Life Cycle Assessment of Pharmaceuticals	Cespi et al.	2015	2	Methodological framework	reactions in batch to continuous microreactor networks Life cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining PMI and LCA tools	(ReCiPe) PMI + LCA	Cradle-to-Gate	0	0	Green Chem.	8.30 Q1
32 3	Life Cycle Assessment of Pharmaceuticals	Kralisch et al.	2015	2	with case study Review with recommendations	Rules and benefits of Life Cycle Assessment in green chemical process and synthesis design: a tutorial review	LCA	Cradle-to-Cradle	7	4	Green Chem.	8.30 Q1
33 4	Life Cycle Assessment in	Campion et al.	2012	5	Case study	Life cycle assessment perspectives on delivering an infant in the US	TRACI	Cradle-to-Grave	7	1	Sci. Total Environ.	4.42 Q1
34 4	Healthcare Life Cycle Assessment in	Thiel et al.	2015	2	Review with	Environmental Impacts of Surgical Procedures: Life Cycle Assessment of	Hybrid LCA		1	1	Environ. Sci. Technol.	6.33 Q1
35 5	Green Chemistry related to	Curzons et al.	1999	18	recommendations Methodological framework	Hysterectomy in the United States Solvent selection guide: a guide to the integration of environmental,	Process Analysis	Process Level	10	1	Clean. Technol. Envir.	1.93 Q1
36 5	Pharmaceuticals Green Chemistry related to Pharmaceuticals	Curzons et al.	2001	16	Perspective	health and safety criteria into the selection of solvents So you think your process is green, how do you know?-Using principles of sustainability to determine what is green-a corporate perspective	Process Analysis	Process Level	156	10	Green Chem.	8.30 Q1
37 5	Green Chemistry related to Pharmaceuticals	Constable et al.	2002	15	Review with recommendations	Metrics to 'green' chemistry - which are the best?	Process Analysis	Gate-to-Gate	215	14	Green Chem.	8.30 Q1
38 5	Green Chemistry related to Pharmaceuticals	Haswell et al.	2003	14	Review	Green chemistry: synthesis in micro reactors	Green Chemistry toolbox	Process Level	111	8	Green Chem.	8.30 Q1
39 5	Green Chemistry related to Pharmaceuticals	Nisiwaki	2003	14	Review	Green chemistry in process research and development in pharmaceutical industry	Green Chemistry toolbox	Process Level	1	0	J. Synth. Org. Chem. Jpn.	0.71 Q4
40 5	Green Chemistry related to Pharmaceuticals	Thomas et al.	2005	12	Methodological framework with case study	Designing catalysts for clean technology, green chemistry, and sustainable development	Green Chemistry toolbox	Process Level	54	5	Ann. Rev. Mater. Res.	17.98 Q1
41 5	Green Chemistry related to Pharmaceuticals	Koel et al.	2006	11	Case study	Application of the principles of green chemistry in analytical chemistry	Green Chemistry toolbox	Process Level	66	6	Pure Appl. Chem.	3.20 Q2
42 5	Green Chemistry related to Pharmaceuticals	Tucker	2006	11	Review with recommendations	Green chemistry, a pharmaceutical perspective	Green Chemistry toolbox	Process Level	87	8	Org. Process Res. Dev.	2.53 Q1
43 5	Green Chemistry related to Pharmaceuticals	Constable et al.	2007	10	Perspective with recommendations	Key green chemistry research areas - a perspective from pharmaceutical manufacturers	Green Chemistry toolbox	Process Level	437	44	Green Chem.	8.30 Q1
44 5	Green Chemistry related to Pharmaceuticals	Fortunak et al.	2007	10	Review	Strength and honor through the pharmaceutical industry's embrace of green chemistry?	Green Chemistry toolbox	Process Level	1	0	Curr. Opin. Drug. Disc	5.12 Q1
45 5	Green Chemistry related to Pharmaceuticals	Khetan et al.	2007	10	Review with recommendations	Human pharmaceuticals in the aquatic environment: A challenge to green chemistry	Green Chemistry toolbox	Cradle-to-Grave	326	33	Chem. Rev.	50.68 Q1
46 5	Green Chemistry related to Pharmaceuticals	Kuemmerer	2007	10	Review	Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry	Green Chemistry toolbox	Process Level	51	5	Green Chem.	8.30 Q1
47 5	Green Chemistry related to Pharmaceuticals	Alfonsi et al.	2008	9	Methodological framework	Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation	Green Chemistry toolbox	Process Level	309	34	Green Chem.	8.30 Q1
48 5	Green Chemistry related to Pharmaceuticals	Cue et al.	2009	8	Review	Green process chemistry in the pharmaceutical industry	Green Chemistry toolbox	Process Level	21	3	Green Chem. Lett. Rev.	1.52 Q3
49 5	Green Chemistry related to Pharmaceuticals	Fortunak	2009	8	Review	Current and future impact of green chemistry on the pharmaceutical industry	Green Chemistry toolbox	Process Level	6	1	Future Med. Chem.	3.79 Q1
50 5	Green Chemistry related to Pharmaceuticals	Garcia-Reyes et al.	2009		Case study	Flow-Through Solid-Phase Spectroscopy: A Contribution to Green Analytical Chemistry	Green Chemistry toolbox	Process Level	4	1	Spectr. Lett.	0.85 Q4
51 5	Green Chemistry related to Pharmaceuticals	Molina-Diaz et al.	2010	7	Case study	How green chemistry can contribute to pharmaceutical industry sustainability: Accomplishments and opportunites	Green Chemistry toolbox	Process Level	13	2	Trac-Trends Anal. Chem.	6.93 Q1
52 5	Green Chemistry related to Pharmaceuticals	Broxterman et al.	2011	6	Methodological framework	Pharma and suppliers collaborating on Green Chemistry Launch of PMI tool	PMI Toolbox	Process Level	3	1	Chim. Oggi-Chem. Today	0.41 Q4
53 5	Green Chemistry related to Pharmaceuticals	Hartman et al.	2011	6	Case study	Analytical Method Volume Intensity (AMVI): A green chemistry metric for HPLC methodology in the pharmaceutical industry	Green Chemistry toolbox	Process Level	11	2	Green Chem.	8.30 Q1
54 5	Green Chemistry related to Pharmaceuticals	Wernet et al.	2011	6	Perspective with recommendations	The Environmental Importance of Energy Use in Chemical Production	LCA	Cradle-to-Gate	10	2	J. Ind. Ecol.	3.70 Q1

55 5	Green Chemistry related to	Jiménez-González et al.	. 2011b	8	Perspective with	Key Cream Empire and a December Agent for Contribute Many for the	N/A	N/A	90	11	Org. Process Res. Dev.	2.53
	Pharmaceuticals				recommendations	Key Green Engineering Research Areas for Sustainable Manufacturing: A Perspective from Pharmaceutical and Fine Chemicals Manufacturers		·			Ü	
5	Green Chemistry related to Pharmaceuticals	Joshi et al.	2011	6	Review with recommendations	Green Chemistry: Need of the Hour	Green Chemistry toolbox	Process Level	0	0	Indian J. Pharm. Educ. Res.	0.38
5	Green Chemistry related to Pharmaceuticals	Soundarrajan et al.	2011	6	Case study	Piperidone synthesis using amino acid: A promising scope for green chemistry	Green Chemistry toolbox	Process Level	0	0	Microchem J.	3.05
5	Green Chemistry related to Pharmaceuticals	Kaur et al.	2012	5	Case study	Comparative Study of Various Green Chemistry Approaches for the Efficient Synthesis of 1,4-Dihydropyridines	Green Chemistry toolbox	Process Level	8	2	Asian J. Chem.	0.36
5	Green Chemistry related to Pharmaceuticals	Ley	2012	5	Methodological framework	On being green: Can flow chemistry help?	Green Chemistry toolbox	Process Level	74	15	Chem. Rec.	5.50
5	Green Chemistry related to Pharmaceuticals	Watson	2012	5	Review with recommendations	How do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability?	Green Chemistry toolbox	Process Level	51	10	Green Chem.	8.30
5	Green Chemistry related to Pharmaceuticals	Ciriminna	2013	4	Review with recommendations	Green Chemistry in the Fine Chemicals and Pharmaceutical Industries	Green Chemistry toolbox	Process Level	13	3	Org. Process Res. Dev.	2.53
5	Green Chemistry related to	Dunn	2013	4	Perspective with	Pharmaceutical Green Chemistry process changes - how long does it	Green Chemistry + LCA Toolbox	Cradle-to-Gate	5	1	Green Chem.	8.30
5	Pharmaceuticals Green Chemistry related to	Federsel	2013	4	recommendations Perspective with		PMI Toolbox	Cradle-to-Gate	7	2	Green Chem.	8.30
5	Pharmaceuticals Green Chemistry related to	Leahy et al.	2013	4	recommendations Perspective with	the pharmaceutical industry Seven Important Elements for an Effective Green Chemistry Program: An	Green Chemistry toolbox	Process Level	11	3	Org. Process Res. Dev.	2.53
5	Pharmaceuticals Green Chemistry related to Pharmaceuticals	Osorio et al.	2014	3	recommendations Case study	IQ Consortium Perspective Photochemical derivatization of amitriptyline using a green chemistry approach: fluorimetric determination and photochemical reaction	Green Chemistry toolbox	Process Level	0	0	Anal. Methods	1.84
5	Green Chemistry related to	Rastogi et al.	2014	3	Methodological framework	mechanism Designing green derivatives of beta-blocker Metoprolol: A tiered	Green Chemistry Toolbox and QSAR	Process Level	5	2	Chemosphere	3.85
5	Pharmaceuticals Green Chemistry related to	Banimostafa et al.	2015	2	Case study	approach for green and sustainable pharmacy and chemistry Retrofit design of a pharmaceutical batch process considering "green	LCA	Cradle-to-Gate	0	0	AICHE J.	2.75
5	Pharmaceuticals Green Chemistry related to Pharmaceuticals	DeVito et al.	2015	2	Case study	chemistry and engineering" principles Can pollutant release and transfer registers (PRTRs) be used to assess implementation and effectiveness of green chemistry practices? A case study involving the Toxics Release Inventory (TRI) and pharmaceutical	Green Chemistry toolbox	Process Level	0	0	Green Chem.	8.30
5	Green Chemistry related to Pharmaceuticals	Gupta et al.	2015	2	Perspective	manufacturers Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry	Green Chemistry toolbox	Process Level	0	0	RSC Adv.	3.91
5	Green Chemistry related to Pharmaceuticals	M'Hamed	2015	2	Perspective	Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry	Green Chemistry toolbox	Process Level	0	0	Synth. Commun.	0.99
5	Green Chemistry related to Pharmaceuticals	Roschangar et al.	2015	2	Methodological framework with case study	Overcoming barriers to green chemistry in the pharmaceutical industry - the Green Aspiration Level™ concept	Green Chemistry toolbox	Process Level	7	4	Green Chem.	8.30
5	Green Chemistry related to Pharmaceuticals	Sullivan	2015	2	Review	Pharmaceutical innovation and greener chemistry: Celebrating 20 years of impact	Green Chemistry toolbox	Process Level	0	0	Chim. Oggi-Chem. Today	0.41
5	Green Chemistry related to Pharmaceuticals	Tucker	2015	2	Methodological framework	Pharmaceutical Green Chemistry at Amgen: Seeing with New Eyes	Green Chemistry toolbox	Process Level	0	0	Aldrichimica Acta	17.0
5	Green Chemistry related to	Voorhees	2015	2	Perspective with	ACS GCI Pharmaceutical Roundtable Celebrates 10 Years Of Green	Green Chemistry toolbox	Process Level	0	0	Chem. Eng. News	0.27
5	Pharmaceuticals Green Chemistry related to	Gallou et al.	2016	1	recommendations Case study	Chemistry Innovation Surfactant technology applied toward an active pharmaceutical	Green Chemistry toolbox	Process Level	1	0	Green Chem.	8.30
5	Pharmaceuticals Green Chemistry related to	Borukhova et al.	2016	1	Case study	ingredient: more than a simple green chemistry advance Hydrogen Chloride Gas in Solvent-Free Continuous Conversion of	Green Chemistry toolbox	Process Level	0	0	Org. Process Res. Dev.	2.53
7	Pharmaceuticals Resource Consumption related to Pharmaceuticals	Van der Vorst et al.	2009	8	Case study	Alcohols to Chlorides in Microflow Exergetic life cycle analysis for the selection of chromatographic separation processes in the pharmaceutical industry: preparative HPLC	Combining RE at process level and LCA (CEENE)	Cradle-to-Gate	26	3	Green Chem.	8.30
7	Resource Consumption related to Pharmaceuticals	Van der Vorst et al.	2009	8	Methodological framework with case study	versus preparative SFC Assessment of the Integral Resource Consumption of Individual Chemical Production Processes in a Multipurpose Pharmaceutical	Combining RE at process level and LCA (CEENE)	Cradle-to-Gate	11	1	Ind. Eng. Chem. Res.	2.74
7	Resource Consumption related to	Van der Vorst et al.	2010	7	Case study	Production Plant: A Complex Task Resource consumption of pharmaceutical waste solvent valorization	Resource efficiency analysis	Cradle-to-Gate	4	1	Resour. Conserv.	3.28
7	Pharmaceuticals Resource Consumption related to	Van der Vorst et al.	2011	6	Methodological framework	alternatives A Systematic Evaluation of the Resource Consumption of Active	Combining RE at process level and	Cradle-to-Gate	10	2	Recycl. Environ. Sci. Technol.	6.33
7	Pharmaceuticals Resource Consumption related to	Van der Vorst et al.	2013	4	Case study	Pharmaceutical Ingredient Production at Three Different Levels Reduced resource consumption through three generations of	LCA (CEENE) Combining RE at process level and	Cradle-to-Gate	6	2	Green Chem.	8.30
7	Pharmaceuticals Resource Consumption related to	De Soete et al.	2014	3	Case study	Galantamine-HBr synthesis Environmental resource footprinting of drug manufacturing: Effects of scale-up and tablet dosage	LCA (CEENE) Combining RE at process level and LCA (CEENE)	Cradle-to-Gate	1	0	Resour. Conserv.	3.28

83 8	Resource Consumption related to	Hatoum et al.	1998	19	Case study	Insomnia, health-related quality of life and healthcare resource	Resource efficiency analysis	Process Level	91	5	Pharmacoeconomics	2.57 Q1
84 8	Healthcare Resource Consumption related to Healthcare	Optenberg	2002	15	Case study	consumption - A study of managed-care organisation enrollees Antidepressant selection, healthcare resource consumption and costs in a large workplace environment - US and Canadian perspectives	Resource efficiency analysis	Process Level	1	0	Clin. Drug Invest.	1.61 Q3
85 8	Resource Consumption related to Healthcare	Alvarez et al.	2004	13	Case study	Socioeconomic status and resource consumption in primary care	Resource efficiency analysis	Process Level	3	0	An. Pediatr.	0.83 Q4
86 8	Resource Consumption related to Healthcare	Daskalaki et al.	2007	10	Case study	Resource consumption in the infection control management of pertussis exposure among Healthcare workers in Pediatrics	Resource efficiency analysis	Process Level	14	1	Infect. Control Hosp. Epidemiol.	4.50 Q1
87 8	Resource Consumption related to Healthcare	Manca	2008	9	Case study	Quality of life, resource consumption and costs of spinal cord stimulation versus conventional medical management in neuropathic pain patients with failed back surgery syndrome (PROCESS trial)	Resource efficiency analysis	Process Level	59	7	Eur. J. Pain	3.51 Q2
88 8	Resource Consumption related to Healthcare	Leekha	2009	8	Case study	Epidemiology and Control of Pertussis Outbreaks in a Tertiary Care Center and the Resource Consumption Associated With These Outbreaks	Resource efficiency analysis	Process Level	10	1	Infect. Control Hosp. Epidemiol.	4.50 Q1
89 8	Resource Consumption related to Healthcare	Gonzalez-Cortes et al.	2011	6	Case study	Prolonged stay in pediatric intensive care units: mortality and healthcare resource consumption	Resource efficiency analysis	Process Level	6	1	Med. Intensiv.	1.33 Q4
90 8	Resource Consumption related to Healthcare	Gagliardino et al.	2012	5	Case study	Patients' education, and its impact on care outcomes, resource consumption and working conditions: Data from the International Diabetes Management Practices Study (IDMPS)	Resource efficiency analysis	Process Level	16	3	Diabetes Metab.	3.27 Q2
91 8	Resource Consumption related to Healthcare	Polatli et al.	2012	5	Case study	Chronic obstructive pulmonary disease and associated healthcare resource consumption in the Middle East and North Africa: The BREATHE study	Resource efficiency analysis	Process Level	8	2	Respir. Med.	3.09 Q2
92 8	Resource Consumption related to Healthcare	Roggeri et al.	2014	3	Case study	,	Resource efficiency analysis	Process Level	1	0	Eur. J. Prev. Cardiol.	3.38 Q2
93 8	Resource Consumption related to Healthcare	Castro et al.	2015	2	Methodological framework	Development of Benchmarks for Operating Costs and Resources Consumption to be Used in Healthcare Building Sustainability Assessment Methods	BSA	Gate-to-Gate	0	0	Sustainability	0.94 Q3
94 8	Resource Consumption related to Healthcare	Martyn et al.	2015	2	Case study	Reduction in hospital costs and resource consumption associated with the use of advanced topical hemostats during inpatient procedures	Resource efficiency analysis	Process Level	0	0	J. Med. Econ.	1.66 Q1
95 9	Carbon Footprinting of Pharmaceuticals	Connor et al.	2010	7	Case study	The carbon footprint of a renal service in the United Kingdom	CF	Cradle-to-Grave	16	2	QJM-An Int. J. Med.	2.62 Q1
96 9	Carbon Footprinting of Pharmaceuticals	Gatenby	2011	6	Case study	Modelling the carbon footprint of reflux control	CF	Cradle-to-Grave	5	1	Int. J. Surg.	1.80 Q2
97 9	Carbon Footprinting of Pharmaceuticals	Lim et al.	2013	4	Case study	The carbon footprint of an Australian satellite haemodialysis unit	CF	Cradle-to-Grave	4	1	Aust. Health Rev.	0.96 Q4
98 10	Carbon Footprinting in Healthcare	Connor et al.	2011	6	Case study	The carbon footprints of home and in-center maintenance hemodialysis in the United Kingdom	CF	Cradle-to-Grave	25	4	Hemodial. Int.	1.36 Q3
99 10	Carbon Footprinting in Healthcare	Wormer et al.	2013	4	Review with recommendations	S .	CF	Cradle-to-Grave	5	1	Am. Surg.	1.11 Q4
100 10	Carbon Footprinting in Healthcare	Holmer et al.	2014	3	Perspective with recommendations		CF	Cradle-to-Grave	1	0	PLoS One	3.70 Q1
101 10	Carbon Footprinting in Healthcare	Pollard et al.	2014	3	Review with recommendations	The carbon footprint of acute care: how energy intensive is critical care?	CF	Cradle-to-Gate	0	0	Public Health	1.62 Q2