Supporting information

Dual roles of sulfonyl hydrazides in the catalyst-free sulfonylation of unsaturated benzylic alcohols in water

Kun Xu, Lijun Li, Wen Yan, Yuanyuan Wu, Zhiqiang Wang and Sheng Zhang*
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061 P. R. China

Table of Contents

Part I Experimental Section S2
1.1 General information S2
1.2 Preparation of substrates 1a-1f S2
1.3 General working procedure for the sulfonylation and control experiments S2
1.4 Experimental date of the products S4-S9

Part II NMR Spectra S10-S38
Part I Experimental Section

1. General information

1H NMR and 13C NMR were recorded on a Bruker-400MHz Spectrometer (1H NMR: 400 MHz, 13C NMR: 100 MHz) using TMS as internal reference. The chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz respectively. Commercially available compounds were used without further purification. All solvents were purified according to the standard procedures unless otherwise noted. Substrate 1a-1f, 1g-1l, 4, 5, 7, TsNDND$_2$ (11) was prepared according to the literature procedures.

1.2 Preparation of substrates 1a-1f (1b as an example)

a) Preparation of 2-hydroxybenzaldehyde

\[
\begin{align*}
\text{Ph} & \quad (\text{HCHO}),_n \quad \text{MgCl}_2 \quad \text{Et}_3\text{N}, \text{THF} \\
& \rightarrow \quad \text{Ph} \quad (\text{HO})_2
\end{align*}
\]

p-Methyl phenol (2.1 g, 20 mmol), paraformaldehyde (4.2 g), Et$_3$N (10.6 mL, 76 mmol) and MgCl$_2$ (2.8 g, 30 mmol) were mixed in THF (60 mL). After being refluxed for 24 h, the reaction mixture was cooled to room temperature, and its pH was adjusted to 3 with concentrated hydrochloric acid. The resulting aqueous solution was extracted with ethyl acetate (50 mL × 3). The organic layers were separated, combined and dried with Na$_2$SO$_4$. Removal of the solvent gave a crude product which was purified using flash chromatography on a silica gel column with ethyl acetate/petroleum ether = 1/10 as eluent to give a pale yellow solid.

b) Preparation of homoallylic alcohols

To a mixture of 2-hydroxy-5-methylbenzaldehyde (4 mmol) in 8 mL of THF and 16 mL of saturated NH$_4$Cl solution was added zinc powder (0.520 g, 8 mmol) and allyl bromide (700 μL, 8 mmol) at room temperature. After the mixture was stirred for 4 h it was extracted with ethyl acetate for three times. The combined organic extracts were dried using anhydrous Na$_2$SO$_4$ and evaporated under reduced pressure. The residue was then purified by column chromatography over silica gel to afford the product 1b as a light yellow oil.

1.3 General working procedure for the sulfonylation and control experiments

a) General working procedure for the sulfonylation (3aa as example)

To the mixture of 1a (82 mg, 0.5 mmol) in 2.5 mL water was added tosylhydrazide (186 mg, 1mmol) in a sealed tube. After the mixture was stirred for 12 h at 120 °C, it was extracted with ethyl acetate for three times. The combined organic phase was dried with anhydrous Na$_2$SO$_4$ and evaporated under reduced pressure. The resulting residue was purified by column chromatography (PE/EA = 10/1 - 6/1) to afford the product 3aa as a colorless oil (125 mg, 82% yield).
b) The procedure of control experiments

To the mixture of 1a (82 mg, 0.5 mmol) in 2.5 mL water was added benzene sulfinic acid (142 mg, 1 mmol) in a sealed tube. After the mixture was stirred for 12 h at 120 °C, it was extracted with ethyl acetate for three times. The combined organic phase was dried with anhydrous Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography (PE/EA = 10/1 - 6/1) to afford the product 10 as a colorless oil (102 mg, 71% yield).

To the mixture of 1a (82 mg, 0.5 mmol) in 2.5 mL deuterated water was added tosylhydrazide (186 mg, 1 mmol) in a sealed tube. After the mixture was stirred for 12 h at 120 °C, it was extracted with ethyl acetate for three times. The combined organic phase was dried with anhydrous Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography (PE/EA = 10/1 - 6/1) to afford the product d²-3aa as a colorless oil (123 mg, 81% yield).

d²-3aa HRMS

<table>
<thead>
<tr>
<th>m/z</th>
<th>Relative</th>
<th>Theo.Mass</th>
<th>Delta(mmu)</th>
<th>PPM</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.1152</td>
<td>100</td>
<td>329.1156</td>
<td>0.4</td>
<td>0.8</td>
<td>C17H18D2NaO3S</td>
</tr>
</tbody>
</table>

Figure S1. HRMS spectra of d²-3aa
1.4 Experimental date of the products

2-(1-tosylbutyl)phenol (3aa): Colorless oil in 82% yield (63% yield, with 4 as substrate). 1H NMR (400 MHz, CDCl$_3$): δ 7.50-7.48 (d, J = 8.0 Hz, 2H), 7.21-7.14 (m, 3H), 6.86-6.81 (m, 3H), 4.58 (s, 1H), 2.39 (s, 3H), 2.30-2.21 (m, 2H), 1.24-1.14 (m, 2H), 0.88-0.84 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.4, 144.6, 133.9, 129.8, 129.2, 128.9, 120.7, 118.8, 116.9, 62.6, 28.7, 21.5, 19.9, 13.4; HRMS (ESI) m/z calcd for C$_{17}$H$_{29}$O$_2$S [M+H]$^+$ 305.1211, found 305.1206. Spectral data correspond to those described in the literature.6

4-methyl-2-(1-tosylbutyl)phenol (3ba): White solid in 78% yield, m.p. 68-70 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.51-7.50(d, J = 6.8 Hz, 2H), 7.22-7.21(d, J = 7.7 Hz, 2H), 6.97-6.95(d, J = 7.8 Hz, 1H), 6.74(m, 2H), 4.70(s, 1H), 2.40(s, 3H), 2.17(m, 4H), 2.04-2.02(m, 1H), 1.21-1.12(m, 2H), 0.87-0.84(t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 153.1, 144.6, 133.7, 130.5, 130.2, 129.2, 129.0, 118.7, 117.2, 62.5, 29.3, 21.6, 20.5, 20.0, 13.5; HRMS (ESI) m/z calcd for C$_{19}$H$_{22}$O$_2$S [M+Na]$^+$ 341.1187, found 341.1193.

4-methoxy-2-(1-tosylbutyl)phenol (3ca): Colorless oil in 93% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.52-7.50(d, J = 7.6 Hz, 2H), 7.22-7.20(d, J = 7.7 Hz, 2H), 6.71(m, 3H), 6.63(s, 1H), 4.81(s, 1H), 3.66(s, 3H), 2.38(s, 3H), 2.21-2.19(m, 2H), 1.26-1.13(m, 2H), 0.87-0.83(t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 153.4, 149.3, 144.6, 133.7, 129.2, 128.9, 119.8, 117.8, 115.4, 113.6, 62.5, 55.6, 29.2, 21.5, 19.8, 13.5; HRMS (ESI) m/z calcd for C$_{18}$H$_{23}$O$_3$S [M+Na]$^+$ 357.1136, found 357.1128.

3-(1-tosylbutyl)-1,1'-biphenyl-4-ol (3da): White solid in 70% yield, m.p. 137-139 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.55-7.53(d, J = 7.0 Hz, 2H), 7.37-7.29(m, 6H), 7.25-7.22(m, 3H), 6.92(s, 1H), 6.59(s, 1H), 4.89(s, 1H), 2.39(s, 3H), 2.82-2.62(m, 1H), 2.07-1.85(m, 1H), 1.30-1.16(m, 2H), 0.88-0.84(t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.1, 144.8, 140.3, 133.9, 133.4, 129.3, 129.2, 128.7, 126.8, 126.6, 119.3, 117.6, 62.8, 29.3, 21.6, 19.9, 13.5; HRMS (ESI) m/z calcd for C$_{23}$H$_{23}$O$_2$S [M+Na]$^+$ 403.1344, found 403.1333.

4-bromo-2-(1-tosylbutyl)phenol (3ea): Colorless oil in 75% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.55-7.53(d, J = 7.9 Hz, 2H), 7.27-7.25(d, J = 8.0 Hz, 2H), 7.21-7.19(d, J = 8.3 Hz, 1H), 7.14(s, 1H), 6.66(s, 1H), 4.81(s, 1H), 2.41(s, 3H), 2.14-2.13(m, 1H), 1.97(m, 1H), 1.28-1.08(m, 2H), 0.85-0.82(t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 154.8, 145.0, 133.3, 132.6, 131.3, 129.4, 129.0, 120.9, 118.2, 112.4, 62.1, 29.2, 21.6, 19.7, 13.4; HRMS (ESI) m/z calcd for C$_{19}$H$_{19}$BrO$_2$S [M+H]$^+$ 383.0317, found 383.0326.
2-methyl-6-(1-tosylbutyl)phenol (3fa): Colorless oil in 81% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.46 (s, 2H), 7.21-7.19 (d, J = 7.8 Hz, 2H), 7.08-7.06 (d, J = 7.2 Hz, 1H), 6.71 (s, 2H), 6.11 (s, 1H), 4.76 (s, 1H), 2.40 (s, 3H), 2.23 (m, 4H), 2.07-2.01 (m, 1H), 1.26-1.12 (m, 2H), 0.87-0.84 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 153.8, 144.8, 133.1, 131.4, 129.2, 126.2, 120.7, 118.9, 63.4, 29.2, 21.6, 19.9, 16.3, 13.5; HRMS (ESI) m/z calcd for C$_{18}$H$_{22}$O$_3$S [M+Na]$^+$ 341.1187, found 341.1178.

2-(1-tosylbutyl)aniline (3ga): Colorless oil in 87% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.50-7.48 (d, J = 6.6 Hz, 2H), 7.24-7.22 (d, J = 7.2 Hz, 2H), 7.09 (s, 1H), 6.74-6.69 (m, 3H), 4.54-4.52 (d, J = 9.6 Hz, 1H), 3.98 (br, 2H), 2.41 (s, 3H), 2.22-2.14 (m, 1H), 1.93-1.91 (m, 1H), 1.23-1.10 (m, 2H), 0.84-0.82 (t, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 147.3, 144.6, 133.3, 129.5, 129.2, 128.6, 119.3, 118.1, 64.7, 30.2, 21.6, 19.6, 13.4; HRMS (ESI) m/z calcd for C$_{17}$H$_{21}$NO$_2$S [M+Na]$^+$ 326.1191, found 326.1192.

4-(1-tosylbutyl)phenol (3ha): White solid in 73% yield, m.p. 134-136 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.45-7.43 (d, J = 7.9 Hz, 2H), 7.22-7.20 (d, J = 7.8 Hz, 2H), 6.96-6.94 (d, J = 8.0 Hz, 2H), 6.71-6.69 (d, J = 8.0 Hz, 2H), 6.45 (s, 1H), 4.01-3.98 (m, 1H), 2.40 (s, 3H), 2.28-2.22 (m, 1H), 2.11-2.02 (m, 1H), 1.25-1.12 (m, 2H), 0.86-0.83 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 156.5, 144.5, 134.0, 131.1, 129.3, 129.0, 123.1, 115.5, 70.7, 29.3, 21.6, 19.9, 13.5; HRMS (ESI) m/z calcd for C$_{17}$H$_{21}$O$_2$S [M+Na]$^+$ 327.1031, found 327.1021.

$\text{N,N-dimethyl-4-(1-tosylbutyl)aniline (3ia)}$: White solid in 75% yield, m.p. 150-152 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.42-7.40 (d, J = 8.0 Hz, 2H), 7.19-7.17 (d, J = 7.9 Hz, 2H), 6.95-6.93 (d, J = 8.4 Hz, 2H), 6.58-6.56 (d, J = 8.4 Hz, 2H), 3.96-3.93 (dd, J = 3.2 Hz, 11.8 Hz, 1H), 2.93 (s, 6H), 2.39 (s, 3H), 2.29-2.26 (m, 1H), 2.07-2.04 (m, 1H), 1.28-1.16 (m, 2H), 0.88-0.84 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 150.4, 143.9, 134.7, 130.5, 129.1, 118.8, 111.9, 70.7, 40.3, 29.2, 21.5, 20.0, 13.6; HRMS (ESI) m/z calcd for C$_{19}$H$_{35}$NO$_2$S [M+Na]$^+$ 354.1504, found 354.1513.

2-(1-(phenylsulfonyl)butyl)phenol (3ab): Colorless oil in 78% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.62-7.54 (m, 3H), 7.41-7.38 (t, J = 7.3 Hz, 2H), 7.17-7.13 (t, J = 7.6 Hz, 1H), 6.99-6.81 (m, 3H), 4.68 (s, 1H), 2.29-2.10 (m, 2H), 1.30-1.13 (m, 2H), 0.88-0.85 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.3, 136.9, 133.5, 129.8, 128.8, 128.4, 120.6, 118.5, 116.5, 62.4, 28.7, 19.8, 13.4; HRMS (ESI) m/z calcd for C$_{16}$H$_{18}$O$_3$S [M+Na]$^+$ 313.0874, found 313.0864.
2-(1-((4-methoxyphenyl)sulfonyl)butyl)phenol (3ac): Colorless oil in 72% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.52-7.50 (d, $J = 8.2$ Hz, 2H), 7.17-7.13 (t, $J = 7.5$ Hz, 1H), 6.86-6.84 (m, 5H), 4.59 (s, 1H), 3.83 (s, 3H), 2.27-2.14 (m, 2H), 1.26-1.14 (m, 2H), 0.88-0.84 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 163.6, 155.4, 131.0, 129.8, 128.2, 120.6, 119.0, 116.6, 113.7, 62.8, 55.5, 28.8, 19.9, 13.4; HRMS (ESI) m/z calcd for C$_{17}$H$_{20}$O$_2$S [M+H]$^+$ 321.1161, found 321.1163.

2-(1-((4-propylphenyl)sulfonyl)butyl)phenol (3ad): White solid in 80% yield, m.p. 121-123 ºC. 1H NMR (400 MHz, CDCl$_3$): δ 7.52-7.50 (d, $J = 7.9$ Hz, 2H), 7.20-7.13 (m, 3H), 6.84-6.82 (m, 3H), 4.62 (s, 1H), 2.63-2.59 (t, $J = 7.5$ Hz, 2H), 2.26-2.09 (m, 2H), 1.67-1.57 (m, 2H), 1.31-1.14 (m, 2H), 0.91-0.73 (m, 6H); 13C NMR (100 MHz, CDCl$_3$): δ 155.4, 149.2, 133.9, 132.8, 129.9, 129.0, 128.6, 120.8, 119.0, 117.4, 63.3, 37.8, 28.5, 24.0, 19.9, 13.48, 13.45; HRMS (ESI) m/z calcd for C$_{19}$H$_{22}$O$_2$S [M+Na]$^+$ 355.1344, found 355.1334.

2-(1-((4-butyrylphenyl)sulfonyl)butyl)phenol (3ae): White solid in 71% yield, m.p. 138-140 ºC. 1H NMR (400 MHz, CDCl$_3$): δ 7.52-7.50 (d, $J = 7.5$ Hz, 2H), 7.21-7.12 (m, 3H), 7.00-6.81 (m, 3H), 4.68 (s, 1H), 2.65-2.62 (t, $J = 7.2$ Hz, 2H), 2.25-2.14 (m, 2H), 1.61-1.53 (m, 2H), 1.35-1.12 (m, 4H), 0.93-0.84 (m, 6H); 13C NMR (100 MHz, CDCl$_3$): δ 155.5, 149.5, 133.8, 132.8, 129.9, 129.0, 128.6, 120.9, 119.1, 117.6, 63.1, 35.5, 33.0, 28.6, 22.1, 20.0, 13.8, 13.5; HRMS (ESI) m/z calcd for C$_{20}$H$_{26}$O$_2$S [M+H]$^+$ 347.1681, found 347.1673.

2-(1-((4-(tert-butylyl)phenyl)sulfonyl)butyl)phenol (3af): Colorless oil in 78% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.56-7.54 (d, $J = 8.2$ Hz, 2H), 7.42-7.40 (d, $J = 8.4$ Hz, 2H), 7.14-7.10 (t, $J = 7.6$ Hz, 1H), 6.97 (s, 1H), 6.80 (s, 2H), 4.73 (s, 1H), 2.22-2.04 (m, 2H), 1.30 (s, 9H), 1.22-1.14 (m, 2H), 0.86-0.83 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 157.6, 155.5, 133.7, 129.9, 128.8, 125.6, 120.7, 118.9, 117.3, 62.8, 35.1, 30.9, 28.8, 19.9, 13.4; HRMS (ESI) m/z calcd for C$_{20}$H$_{26}$O$_2$S [M+H]$^+$ 347.1681, found 347.1675.

2-(1-((4-(trifluoromethoxy)phenyl)sulfonyl)butyl)phenol (3ag): Colorless oil in 65% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.63-7.61 (d, $J = 8.4$ Hz, 2H), 7.19-7.17 (d, $J = 8.2$ Hz, 2H), 7.15-7.11 (t, $J = 7.6$ Hz, 1H), 6.86 (s, 1H), 6.69 (s, 1H), 6.23 (s, 1H), 4.82 (s, 1H), 2.35-2.15 (m, 2H), 1.39-1.14 (m, 2H), 0.90-0.86 (t, $J = 7.3$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.1, 152.8, 135.4, 131.2, 130.1, 129.2, 124.0-116.2 (q, $J_{C-F} = 258.1$ Hz), 120.9, 120.1, 118.5, 116.2, 62.6, 28.5, 19.9, 13.4; HRMS (ESI) m/z calcd for C$_{17}$H$_{17}$F$_3$O$_2$S [M+H]$^+$ 375.0878, found 375.0888.
2-(1-((4-bromophenyl)sulfonyl)butyl)phenol (3ah): Colorless oil in 65% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.51-7.49 (d, $J = 8.4$ Hz, 2H), 7.44-7.42 (d, $J = 8.4$ Hz, 2H), 7.17-7.10 (m, 2H), 6.86 (s, 1H), 6.70 (s, 1H), 4.83 (s, 1H), 2.29-2.14 (m, 2H), 1.35-1.14 (m, 2H), 0.88-0.85 (t, $J = 7.3$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.1, 136.2, 131.7, 130.4, 130.0, 128.8, 120.8, 118.3, 116.1, 62.2, 28.6, 19.8, 13.4; HRMS (ESI) m/z calcd for C$_{16}$H$_17$BrO$_3$S [M+H]$^+$ 369.0160, found 369.0153.

2-(1-((4-chlorophenyl)sulfonyl)butyl)phenol (3ai): Colorless oil in 70% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.52-7.50 (d, $J = 8.2$ Hz, 2H), 7.36-7.34 (d, $J = 8.4$ Hz, 2H), 7.17-7.13 (m, 2H), 6.86 (s, 1H), 6.74 (s, 1H), 4.76 (s, 1H), 2.34-2.14 (m, 2H), 1.34-1.14 (m, 2H), 0.89-0.86 (t, $J = 7.3$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.1, 140.3, 135.6, 130.4, 130.1, 128.8, 121.1, 118.6, 116.7, 62.4, 28.4, 19.9, 13.5; HRMS (ESI) m/z calcd for C$_{16}$H$_17$ClO$_3$S [M+Na]$^+$ 347.0485, found 347.0487.

2-(1-((4-fluorophenyl)sulfonyl)butyl)phenol (3aj): Colorless oil in 90% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.58 (m, 2H), 7.28-7.14 (m, 2H), 7.07-7.03 (t, $J = 8.4$ Hz, 2H), 6.87 (s, 1H), 6.71 (s, 1H), 6.40 (s, 1H), 4.86 (s, 1H), 2.31-2.29 (m, 1H), 2.20-2.14 (m, 1H), 1.31-1.17 (m, 2H), 0.90-0.86 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 166.9-164.4 (d, $J_{F,C} = 254.5$ Hz), 155.1, 132.9, 131.8-131.7 (d, $J_{F,C} = 9.5$ Hz), 130.0, 128.8, 120.8, 118.5, 115.8-115.6 (d, $J_{F,C} = 22.8$ Hz), 62.2, 28.5, 19.8, 13.5; HRMS (ESI) m/z calcd for C$_{16}$H$_17$FO$_3$S [M+Na]$^+$ 331.0780, found 331.0778.

2-(1-((4-trifluoromethyl)phenyl)sulfonyl)butyl)phenol (3ak): Colorless oil in 67% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.72-7.62 (m, 4H), 7.17-7.13 (t, $J = 7.6$ Hz, 2H), 6.88 (s, 1H), 6.69 (s, 1H), 4.81 (s, 1H), 2.37-2.17 (m, 2H), 1.35-1.16 (m, 2H), 0.90-0.87 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.1, 141.0 135.5-134.5 (q, $J_{F,C} = 32.4$ Hz), 130.2, 129.5, 129.3, 127.2-119.0 (q, $J_{F,C} = 271.4$ Hz), 125.4, 120.9, 118.1, 116.0, 62.3, 28.5, 19.8, 13.4; HRMS (ESI) m/z calcd for C$_{17}$H$_{17}$F$_3$O$_3$S [M+H]$^+$ 359.0929, found 359.0938.

2-(1-(m-tolylsulfonyl)butyl)phenol (3ai): Colorless oil in 70% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.43-7.32 (m, 3H), 7.28-7.24 (t, $J = 7.6$ Hz, 1H), 7.13-7.10 (t, $J = 7.4$ Hz, 1H), 6.82 (m, 1H), 6.76 (m, 1H), 4.76 (s, 1H), 2.29 (s, 3H), 2.25-2.13 (m, 2H), 1.31-1.13 (m, 2H), 0.87-0.83 (t, $J = 7.3$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.5, 138.8, 136.7, 134.4, 129.9, 129.4, 128.4, 126.1, 120.7, 118.8, 116.9, 62.7, 28.7, 21.1, 19.9, 14.1, 13.5; HRMS (ESI) m/z calcd for C$_{17}$H$_{20}$O$_3$S [M+H]$^+$ 305.1211, found 305.1206.
2-(1-o-tolylsulfonyl)butylphenol (3am): Colorless oil in 75% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.66-7.64 (d, $J = 7.9$ Hz, 1H), 7.39-7.35 (t, $J = 7.4$ Hz, 1H), 7.20-7.12 (m, 3H), 7.07-7.04 (t, $J = 7.4$ Hz, 1H), 6.83 (m, 1H), 6.65 (s, 1H), 4.91 (s, 1H), 2.60 (s, 3H), 2.19-2.17 (m, 2H), 1.31-1.13 (m, 2H), 0.86-0.82 (t, $J = 7.3$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.4, 139.0, 135.4, 133.4, 132.3, 131.0, 129.7, 125.8, 120.6, 118.2, 116.2, 61.5, 28.7, 20.3, 19.8, 13.4; HRMS (ESI) m/z calcd for C$_{17}$H$_{30}$O$_3$S [M+H]$^+$ 305.1211, found 305.1217.

2-(1-(2,5-dichlorophenyl)sulfonyl)butylphenol (3an): Colorless oil in 62% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.76 (s, 1H), 7.42-7.33 (m, 3H), 7.13-7.09 (t, $J = 7.5$ Hz, 1H), 6.89 (s, 1H), 6.69 (s, 1H), 5.34 (s, 1H), 2.23-2.11 (m, 2H), 1.35-1.17 (m, 2H), 0.89-0.85 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.3, 136.8, 134.5, 133.2, 132.8, 132.0, 131.5, 130.3, 121.0, 117.3, 116.5, 62.0, 28.6, 19.8, 13.4; HRMS (ESI) m/z calcd for C$_{16}$H$_{16}$Cl$_2$O$_3$S [M+H]$^+$ 359.0275, found 359.0269.

2-(1-(3,5-bis(trifluoromethyl)phenyl)sulfonyl)butylphenol (3ao): Colorless oil in 67% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.98 (s, 1H), 7.90 (s, 2H), 7.39 (s, 1H), 7.14-7.10 (t, $J = 7.6$ Hz, 1H), 6.97-6.95 (m, 1H), 6.52 (s, 1H), 5.88 (s, 1H), 4.90 (s, 1H), 2.46-2.38 (m, 1H), 2.21-2.16 (m, 1H), 1.42-1.24 (m, 2H), 0.94-0.90 (t, $J = 7.3$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 154.4, 140.2, 132.4-131.4 (q, $J_{F,C} = 34.1$ Hz), 130.5, 129.4, 128.8, 126.7, 126.4-118.2 (q, $J_{F,C} = 271.7$ Hz), 121.3, 117.7, 115.2, 62.3, 27.6, 19.8, 13.3; HRMS (ESI) m/z calcd for C$_{18}$H$_{16}$F$_2$O$_3$S [M+Na]$^+$ 449.0622, found 449.0629.

2-(1-naphthalen-2-ylsulfonyl)butylphenol (3ap): Colorless oil in 83% yield. 1H NMR (400 MHz, CDCl$_3$): δ 8.20 (s, 1H), 7.85-7.79 (m, 3H), 7.63-7.54 (m, 3H), 7.13-7.09 (m, 2H), 6.80-6.74 (m, 2H), 4.84 (s, 1H), 2.29-2.08 (m, 2H), 1.26-1.12 (m, 2H), 0.86-0.82 (t, $J = 7.0$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.4, 135.1, 134.0, 131.7, 130.9, 129.9, 129.3, 129.1, 128.5, 127.8, 127.3, 123.5, 120.7, 118.7, 116.9, 62.8, 28.8, 19.8, 13.4; HRMS (ESI) m/z calcd for C$_{20}$H$_{20}$O$_3$S [M+H]$^+$ 341.1211, found 341.1203.

2-(1-butylsulfonyl)butylphenol (3aq): Colorless oil in 63% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.39 (s, 1H), 7.24-7.20 (t, $J = 7.4$ Hz, 1H), 6.97-6.93 (m, 2H), 4.71 (s, 1H), 2.91-2.71 (m, 2H), 2.34-2.32 (m, 1H), 2.16 (m, 1H), 1.84-1.65 (m, 2H), 1.40-1.19 (m, 4H), 0.91-0.83 (m, 6H); 13C NMR (100 MHz, CDCl$_3$): δ 155.0, 130.0, 121.0, 119.0, 116.4, 60.2, 50.2, 27.6, 23.1, 21.6, 19.7, 13.42, 13.36; HRMS (ESI) m/z calcd for C$_{10}$H$_{12}$O$_3$S [M+Na]$^+$ 293.1187, found 293.1181.
1-methyl-4-((phenyl(4-propoxyphenyl)methyl)sulfonyl)benzene (6): Colorless oil in 71% yield.

1H NMR (400 MHz, CDCl$_3$): δ 7.51 (m, 2H), 7.50-7.48 (d, J = 7.9 Hz, 2H), 7.43-7.41 (d, J = 8.2 Hz, 2H), 7.29 (m, 3H), 7.15-7.14 (d, J = 7.6 Hz, 2H), 6.84-6.82 (d, J = 8.2 Hz, 2H), 5.22 (s, 1H), 3.90-3.86 (t, J = 6.3 Hz, 2H), 2.36 (s, 3H), 1.81-1.75 (m, 2H), 1.03-0.99 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 159.3, 144.2, 135.4, 133.4, 131.1, 129.8, 129.2, 129.0, 128.6, 124.6, 114.5, 75.8, 69.4, 22.4, 21.6, 10.5; HRMS (ESI) m/z calcd for C$_{29}$H$_{26}$O$_5$S [M+Na]$^+$ 403.1344, found 403.1346.

2-(3-phenylpropyl)phenol (8): Colorless oil in 80% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.29-7.25 (t, J = 7.4 Hz, 2H), 7.20-7.15 (m, 3H), 7.11-7.04 (m, 2H), 6.87-6.84 (t, J = 7.4 Hz, 1H), 6.73-6.71 (d, J = 7.9 Hz, 1H), 4.83 (br, 1H) 2.69-2.62 (m, 4H), 1.99-1.91 (m, 2H); 13C NMR (100 MHz, CDCl$_3$): δ 153.4, 142.3, 130.2, 128.4, 128.3, 128.1, 127.1, 125.7, 120.8, 115.2, 36.6, 31.2, 29.4; 1H and 13C NMR spectral data are in good agreement with the literature data.

2-(1-(phenylsulfonyl)but-3-en-1-yl)phenol (10): Colorless oil in 71% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.62-7.60 (d, J = 7.6 Hz, 2H), 7.57-7.54 (t, J = 7.4 Hz, 1H), 7.41-7.31 (m, 2H), 7.15-7.11 (t, J = 7.5 Hz, 2H), 6.84 (m, 1H), 6.74 (m, 1H), 6.47 (br, 1H), 5.58-5.48 (m, 1H), 5.07-5.02 (d, J = 17.0 Hz, 1H), 5.00-4.93 (d, J = 10.1 Hz, 1H), 4.83 (s, 1H), 3.10-3.07 (m, 1H), 2.91 (m, 1H); 13C NMR (100 MHz, CDCl$_3$): δ 155.2, 136.6, 133.7, 132.6, 130.1, 129.4, 129.0, 128.6, 120.8, 118.3, 116.9, 62.4, 31.0; HRMS (ESI) m/z calcd for C$_{16}$H$_{16}$O$_5$S [M+Na]$^+$ 311.0718, found 311.0727. Spectral data correspond to those described in the literature.

Reference:
Part II NMR Spectra

3aa 1H NMR

3aa 13C NMR
3ba 1H NMR

3ba 13C NMR
3ca 1H NMR

3ca 13C NMR
3da 1H NMR

3da 13C NMR
3fa 1H NMR

3fa 13C NMR
3ga 1H NMR

3ga 13C NMR
3ha 1H NMR

![3ha 1H NMR spectrum image]

3ha 13C NMR

![3ha 13C NMR spectrum image]
3ia 1H NMR

3ia 13C NMR
3ac 1H NMR

3ac 13C NMR
3ad 1H NMR

3ad 13C NMR
3af 1H NMR

3af 13C NMR
3ag 1H NMR

3ag 13C NMR
3ah 1H NMR

3ah 13C NMR
3ai 1H NMR

3ai 13C NMR
3aj 1H NMR

3aj 13C NMR
3ak 1H NMR

3ak 13C NMR
3al 1H NMR

3al 13C NMR
3am 1H NMR

3am 13C NMR
3an 1H NMR

3an 13C NMR
3ao 1H NMR

3ao 13C NMR
3ap 1H NMR

3ap 13C NMR
3aq 1H NMR

3aq 13C NMR
6H NMR

6C NMR
1H NMR

13C NMR
d²-3aa ^1H NMR