Electronic Supplementary Information

Synthesis of ethanol from paraformaldehyde, CO\textsubscript{2} and H\textsubscript{2}

Jingjing Zhang,a,b Qingli Qian,*a Meng Cui,a,b Chunjun Chen,a,b Shuaishuai Liu,a,b Buxing Han*a,b

aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: qianql@iccas.ac.cn, hanbx@iccas.ac.cn

bUniversity of Chinese Academy of Sciences, Beijing 100049, China
Figures

Fig. S1 The representative GC spectra of (a) liquid sample with internal standard toluene and (b) gaseous sample after the reaction of (CH$_2$O)$_n$ with CO$_2$ and H$_2$. Reaction conditions were the same as that of entry 1 in Table 1.
Target 1
The GC-MS spectra of the liquid product after the reaction of \((\text{CH}_2\text{O})_n\) with \(\text{CO}_2\) and \(\text{H}_2\). Reaction conditions were the same as that of entry 1 in Table 1.

Fig. S2 The GC-MS spectra of the liquid product after the reaction of \((\text{CH}_2\text{O})_n\) with \(\text{CO}_2\) and \(\text{H}_2\). Reaction conditions were the same as that of entry 1 in Table 1.
Target 1
Target 2

CH₂OH

1³CH₂CH₂O⁻
Fig. S3 The GC-MS spectra of reaction solution using \(^{13}\text{CH}_2\text{O})_n\) instead of \((\text{CH}_2\text{O})_n\). Other reaction conditions were the same as that of entry 1 in Table 1.

Notes:
1. The molecular weight of ethanol formed in the reaction was 47 Daltons. This demonstrates that the two C atoms in the ethanol product were from C of \((\text{CH}_2\text{O})_n\) and C of CO\(_2\), respectively.
2. According to fragment analysis, the C atom of CH\(_3\) group in ethanol product was from \((\text{CH}_2\text{O})_n\).
Fig. S4 The 1H NMR (a) and 13C NMR (b) spectra of reaction solution using (CH$_2$O)$_n$, and the 1H NMR (c) and 13C NMR (d) spectra of reaction solution using (CH$_2$O)$_n$. Reaction conditions were the same as that of entry 1 in Table 1.

Notes: From the 1H NMR spectra (c) of the 13C-labelled reaction, it can be seen that the proton signal of CH$_3$ group on the ethanol product splits into three peaks compared to the standard spectra (a), which is caused by the coupling with 13C atom. From the 13C NMR spectra (d) of the 13C-labelled reaction, it can be observed that the C signal of CH$_3$ group was abnormally high in contrast to the standard spectra (b). In addition, the C signal of CH$_2$ group splits into triple peaks, which is caused by the coupling with the adjacent 13C atom in the CH$_3$ group. Both 1H NMR and 13C NMR spectra confirmed that the C atoms of CH$_3$ group in ethanol product are mostly from (CH$_2$O)$_n$.
Target 1
Target 2
Fig. S5 The GC-MS spectra of reaction solution using (CD$_2$O)$_n$ instead of (CH$_2$O)$_n$. Other reaction conditions were the same as that of entry 1 in Table 1.
Target 2
Fig. S6 The GC-MS spectra of reaction solution using D₂ instead of H₂. Other reaction conditions were the same as that of entry 1 in Table 1.
The GC spectra of reaction solution after hydrogenation of (CH$_2$O)$_n$ by Ru catalyst. Reaction conditions: 7.5 μmol Ru(acac)$_3$, 3 mmol LiI, 2 mL DMI, 3.2 mmol “CH$_2$O” monomer (0.1 g), 5 MPa H$_2$ (at room temperature), 180 °C, 1 h.
Fig. S8 The GC spectra of reaction solution after hydrogenation of \((\text{CH}_2\text{O})_n\) by Co catalyst. Reaction conditions: 45 \(\mu\text{mol}\) CoBr$_2$, 3 mmol LiI, 2 mL DMI, 3.2 mmol “\text{CH}_2\text{O}” monomer (0.1 g), 5 MPa H$_2$ (at room temperature), 180 °C, 1h.
Fig. S9 The GC spectra of (a) liquid sample and (b) gaseous sample after the CO\(_2\) hydrogenation catalyzed by Ru(acac)$_3$ catalyst. Reaction conditions: 7.5 μmol Ru(acac)$_3$, 3 mmol LiI, 2 mL DMI, 3 MPa CO\(_2\) and 5 MPa H\(_2\) (at room temperature), 180 °C, 9 h.
Fig. S10 The GC spectra of liquid products after the reaction of methanol with CO and H\textsubscript{2} catalyzed by Ru-Co catalyst. Reaction conditions: 7.5 \textmu{}mol Ru(acac)\textsubscript{3} and 45 \textmu{}mol CoBr\textsubscript{2}, 3 mmol LiI, 2 mL DMI, 3.2 mmol methanol, 0.5 MPa CO and 5 MPa H\textsubscript{2} (at room temperature), 180 \textdegree{}C, 9 h.
Fig. S11 Effect of CO pressure on the ethanol formation in the reaction of (CH₂O)ₙ with CO and H₂. Other conditions were the same as that of entry 1 in Table 1.
Fig. S12 The GC spectra of (a) liquid sample and (b) gaseous sample after the CO₂ hydrogenation. Reaction conditions: 7.5 μmol Ru(acac)₃ and 45 μmol CoBr₂, 3 mmol LiI, 2 mL DMI, 3 MPa CO₂ and 5 MPa H₂ (at room temperature), 180 °C, 9 h.
Fig. S13 The GC spectra of (a) liquid sample and (b) gaseous sample after the CO hydrogenation. Reaction conditions: 7.5 μmol Ru(acac)$_3$ and 45 μmol CoBr$_2$, 3 mmol LiI, 2 mL DMI, 0.7 MPa CO and 5 MPa H$_2$ (at room temperature), 180 °C, 9 h.
Fig. S14 The GC spectra of (a) liquid sample and (b) gaseous sample after the CO hydrogenation. Reaction conditions: 7.5 μmol Ru(acac)$_3$ and 45 μmol CoBr$_2$, 3 mmol LiI, 2 mL DMI, 3 MPa CO and 5 MPa H$_2$ (at room temperature), 180 °C, 9 h.