Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Efficient electrosynthesis of phosphinic amides via oxidative

cross-coupling between N-H/P-H

Yukang Wang,^[a] Peng Qian,^[a] Ji-Hu Su,^[b] Yanan Li,^[a] Meixiang Bi,^[a] Zhenggen Zha*^[a] and Zhiyong Wang*^[a]

[a] Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

[b] CAS Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

Fax: (+86)551-3603185; E-mail: zwang3@ustc.edu.cn, zgzha@ustc.edu.cn

Contents

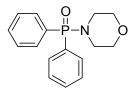
Experimental Section	2
Characterization data for the products	2-11
ESI-HRMS analysis for the TEMPO-P(O)Ph ₂ adduct 4	11-12
NMR spectra for the products	12-48
Crystal structure data	48-56

Experimental Section

General Information

¹H NMR, ¹³C NMR and ³¹P NMR were recorded on a Bruker-400MHz Spectrometer (¹H NMR: 400MHz, ¹³C NMR: 100MHz, ³¹P NMR: 162MHz) using TMS as internal reference. The chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. HRMS (ESI) were recorded on a WatersTM Q-TOF Premier. Commercially available compounds were used without further purification. Solvents were purified according to the standard procedures unless otherwise noted.

Instruments

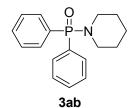

The instrument for electrolysis is dual display potentiostat (CJS-292) (made in China). The anode electrode and cathode electrode all are Pt $(1.5 \times 1.5 \text{ cm}^2)$.

Experimental procedure

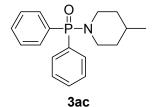
A mixture of **1a** derivatives (0.3mmol) and **2** (0.9mmol), KI (1mmol) and EtOH (10mL) was added to an undivided cell. The cell was equipped with platinum electrodes $(1.5 \times 1.5 \text{ cm}^2)$ as both the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant current of 30 mA under room temperature for corresponding time. When the reaction was finished, the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on silica gel to afford the desired product.

Characterization data for the products

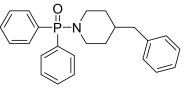
morpholinodiphenylphosphine oxide (3aa)



The compound **3aa** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 86% yield; ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.90-7.86$ (m, 4H), 7.53–7.44 (m, 6H), 3.71 (t, J = 4.5 Hz, 4H), 3.08 (m, 4H); ¹³C NMR (100 MHz,

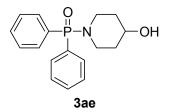

CDCl₃, ppm): $\delta = 131.3$ (d, J = 9.1 Hz), 131.0 (d, J = 2.7 Hz), 129.7 (d, J = 128.5 Hz), 127.7 (d, J = 12.4 Hz), 66.2 (d, J = 6.7 Hz), 43.9; ³¹P NMR (162 MHz, CDCl₃, ppm) $\delta = 29.17$. HRMS (ESI) calcd for C₁₆H₁₉NO₂P [M + H]⁺ 288.1153, found 288.1152.

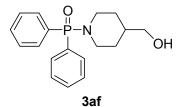
diphenyl(piperidin-1-yl)phosphine oxide (3ab)


The compound **3ab** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 75% yield; mp = 112-114 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.90–7.85 (m, 4H), 7.50–7.42 (m, 6H), 3.04-3.00 (m, 4H), 1.63-1.61 (m, 2H), 1.58-1.57 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 131.3 (d, *J* = 9.7 Hz), 130.9 (d, *J* = 128.7 Hz), 130.6 (d, *J* = 2.7 Hz), 127.5 (d, *J* = 12.3 Hz), 44.7, 25.2 (d, *J* = 6.8 Hz), 23.5; ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 28.99. HRMS (ESI) calcd for C₁₇H₂₁NOP [M + H]⁺ 286.1361, found 286.1361.

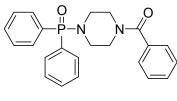
(4-methylpiperidin-1-yl)diphenylphosphine oxide (3ac)

The compound **3ac** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 84% yield; mp = 131-132 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.81–7.76 (m, 4H), 7.40–7.32 (m, 6H), 3.20-3.15 (m, 2H), 2.72-2.66 (m, 2H), 1.51-1.39 (m, 3H), 1.17-1.07 (m, 2H), 0.86 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 132.3 (d, *J* = 128.7 Hz), 132.1 (d, *J* = 8.9 Hz), 131.4 (d, *J* = 2.5 Hz), 128.3 (d, *J* = 12.2 Hz), 45.0, 34.4 (d, *J* = 7.2 Hz), 30.8, 21.9; ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 28.98. HRMS (ESI) calcd for C₁₈H₂₃NOP [M + H]⁺ 300.1517, found 300.1517.


(4-benzylpiperidin-1-yl)diphenylphosphine oxide (3ad)

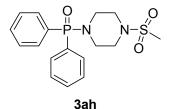

The compound **3ad** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 86% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.89–7.84 (m, 4H), 7.49–7.43 (m, 6H), 7.27–7.24 (m, 2H), 7.19–7.11 (m, 3H), 3.27 (s, 2H), 2.77-2.70 (m, 2H), 2.57 (d, *J* = 7.2 Hz, 2H), 1.72-1.66 (m, 1H), 1.62-1.59 (m, 2H), 1.32-1.29 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 140.0, 132.1 (d, *J* = 9.1 Hz), 131.7 (d, *J* = 128.8 Hz), 131.6 (d, *J* = 2.6 Hz), 129.0, 128.5 (d, *J* = 12.3 Hz), 128.1, 125.8, 45.1, 43.3, 38.1, 32.5 (d, *J* = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 29.27. HRMS (ESI) calcd for C₂₄H₂₇NOP [M + H]⁺ 376.1830, found 376.1826.

(4-hydroxypiperidin-1-yl)diphenylphosphine oxide (3ae)

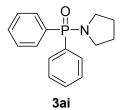

The compound **3ae** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate / methanol = 20:1) to give the product as a yellow oil: 83% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.87–7.82 (m, 4H), 7.50–7.43 (m, 6H), 3.83-3.79 (m, 1H), 3.48 (s, 1H), 3.31-3.28 (m, 2H), 2.87-2.80 (m, 2H), 1.91-1.88 (m, 2H), 1.62-1.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 132.1 (d, *J* = 9.1 Hz), 131.7 (d, *J* = 2.4 Hz), 131.3 (d, *J* = 129.4 Hz), 128.6 (d, *J* = 12.4 Hz), 67.2, 42.8, 34.8 (d, *J* = 6.5 Hz); ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 29.77. HRMS (ESI) calcd for C₁₇H₂₁NO₂P [M + H]⁺ 302.1310, found 302.1309.

(4-(hydroxymethyl)piperidin-1-yl)diphenylphosphine oxide (3af)

The compound **3af** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate / methanol = 20:1) to give the product as a yellow oil: 79% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.88–7.83 (m, 4H), 7.50–7.44 (m, 6H), 3.53 (d, *J* = 5.5 Hz, 2H), 3.31-3.30 (m, 2H), 2.84-2.76 (m, 2H), 2.59 (s, 1H), 1.71-1.69 (m, 3H), 1.35-1.30 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 131.2 (d, *J* = 9.2 Hz), 130.7 (d, *J* = 2.6 Hz), 130.0, 127.6 (d, *J* = 12.4 Hz), 60.4, 44.0, 37.7, 28.2 (d, *J* = 6.7 Hz); ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 29.71. HRMS (ESI) calcd for C₁₈H₂₃NO₂P [M + H]⁺ 316.1466, found 316.1459.

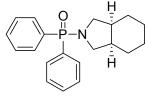

(4-(diphenylphosphoryl)piperazin-1-yl)(phenyl)methanone (3ag)

3ag


The compound **3ag** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate / methanol = 20:1) to give the product as a yellow oil: 64% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.89–7.84 (m, 4H), 7.54–7.47 (m, 6H), 7.37 (s, 5H), 3.81-3.46 (m, 4H), 3.15-3.06 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 169.5, 134.4, 131.3 (d, *J* = 9.2 Hz), 131.1 (d, *J* = 2.4 Hz), 129.7 (d, *J* = 128.1 Hz), 128.8, 127.8 (d, *J* = 12.4 Hz), 127.5, 125.9, 44.1; ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 30.00. HRMS (ESI) calcd for C₂₃H₂₄N₂O₂P [M + H]⁺ 319.1575, found 319.1571.

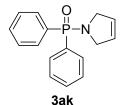
(4-(methylsulfonyl)piperazin-1-yl)diphenylphosphine oxide (3ah)

The compound **3ah** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate / methanol = 20:1) to give the product as a yellow solid: 54% yield; mp = 176-178 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.88–7.84 (m, 4H), 7.56–7.48 (m, 6H), 3.25-3.22 (m, 8H), 2.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 132.19 (d, *J* = 9.1 Hz), 132.18 (d, *J* = 2.7 Hz), 130.5 (d, *J* = 128.7 Hz), 128.8 (d, *J* = 12.5 Hz), 46.2 (d, *J* = 4.3 Hz), 44.9, 34.3; ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 30.23. HRMS (ESI) calcd for C₁₇H₂₂N₂O₃PS [M + H]⁺ 365.1079, found 365.1082.

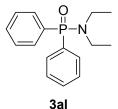

diphenyl(pyrrolidin-1-yl)phosphine oxide (3ai)

The compound **3ai** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 91% yield; mp = 92-93 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.91–7.87 (m, 4H), 7.49–7.42 (m, 6H), 3.14-3.10 (m, 4H), 1.88 (t, *J* = 6.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 131.6 (d, *J* = 129.1 Hz), 131.2 (d, *J* = 9.3 Hz),

130.6 (d, J = 2.5 Hz), 127.5 (d, J = 12.3 Hz), 45.9 (d, J = 2.0 Hz), 25.6 (d, J = 6.7 Hz); ³¹**P** NMR (162 MHz, CDCl₃, ppm) $\delta = 25.40$. HRMS (ESI) calcd for C₁₆H₁₉NOP [M + H]⁺ 272.1204, found 272.1206.

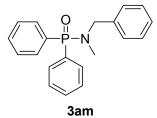

((*3aR*, *7aS*)-octahydro-2H-isoindol-2-yl)diphenylphosphine oxide (3aj)

3aj

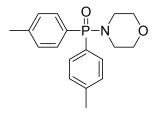

The compound **3aj** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 88% yield; ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.92-7.88$ (m, 4H), 7.49–7.44 (m, 6H), 3.19-3.14 (m, 2H), 2.99-2.94 (m, 2H), 2.23 (s, 2H), 1.61-1.49 (m, 6H), 1.32-1.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 131.6$ (d, J = 129.5 Hz), 131.2 (d, J = 9.0 Hz), 130.6 (d, J = 2.5 Hz), 127.5 (d, J = 12.3 Hz), 49.6 (d, J = 1.1 Hz), 37.5 (d, J = 6.2 Hz), 24.6, 21.8; ³¹P NMR (162 MHz, CDCl₃, ppm) $\delta = 25.08$. HRMS (ESI) calcd for C₂₀H₂₅NOP [M + H]⁺ 326.1674, found 326.1674.

(2,5-dihydro-1H-pyrrol-1-yl)diphenylphosphine oxide (3ak)

The compound **3ak** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 80% yield; mp = 118-120 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.93–7.88 (m, 4H), 7.52–7.44 (m, 6H), 5.77 (s, 2H), 3.99 (d, *J* = 5.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 132.2 (d, *J* = 9.4 Hz), 132.1 (d, *J* = 128.7 Hz), 131.7 (d, *J* = 2.5 Hz), 128.6 (d, *J* = 12.4 Hz), 126.5 (d, *J* = 7.3 Hz), 54.2 (d, *J* = 3.5 Hz); ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 25.06. HRMS (ESI) calcd for C₁₆H₁₇NOP [M + H]⁺ 270.1048, found 270.1048.

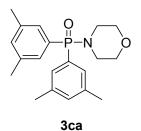

N,N-diethyl-P,P-diphenylphosphinic amide (3al)

The compound **3al** was prepared according to the general working procedure (4 h)

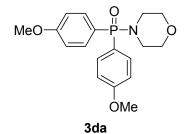

and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 57% yield; mp = 123-125 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.88–7.84 (m, 4H), 7.50–7.42 (m, 6H), 3.07 (dt, *J* = 17.9, 7.0 Hz, 4H), 1.10 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 132.5 (d, *J* = 127.8 Hz), 132.2 (d, *J* = 9.1 Hz), 131.5 (d, *J* = 2.7 Hz), 128.3 (d, *J* = 12.3 Hz), 39.2 (d, *J* = 3.4 Hz), 14.0 (d, *J* = 3.9 Hz); ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 30.56. HRMS (ESI) calcd for C₁₆H₂₁NOP [M + H]⁺ 274.1361, found 274.1360.

N-benzyl-N-methyl-P,P-diphenylphosphinic amide (3am)

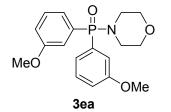
The compound **3am** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 77% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.96–7.91 (m, 4H), 7.51–7.42 (m, 6H), 7.37–7.32 (m, 4H), 7.28–7.24 (m, 1H), 4.13 (d, *J* = 7.7 Hz, 2H), 2.54 (d, *J* = 11.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 137.4 (d, *J* = 7.1 Hz), 132.2 (d, *J* = 9.2 Hz), 131.7 (d, *J* = 2.7 Hz), 131.6 (d, *J* = 128.0 Hz), 128.6, 128.4 (d, *J* = 4.5 Hz), 127.9, 127.2, 52.8(d, *J* = 3.0 Hz), 33.6 (d, *J* = 2.6 Hz); ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 31.66. HRMS (ESI) calcd for C₂₀H₂₁NOP [M + H]⁺ 322.1361, found 322.1359.


morpholinodi-p-tolylphosphine oxide (3ba)

3ba

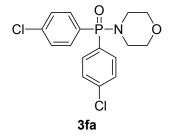

The compound **3ba** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 77% yield; ¹**H NMR** (400 MHz, CDCl₃, ppm): $\delta = 7.77-7.72$ (m, 4H), 7.27–7.26 (m, 4H), 3.70 (s, 4H), 3.06 (s, 4H), 2.37 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): $\delta = 142.3$ (d, J = 2.6 Hz), 132.3 (d, J = 9.4 Hz), 129.4 (d, J = 12.7 Hz), 127.6 (d, J = 131.0 Hz), 67.2 (d, J = 6.7 Hz), 44.9, 21.5; ³¹**P NMR** (162 MHz, CDCl₃, ppm) $\delta = 29.89$. HRMS (ESI) calcd for C₁₈H₂₃NO₂P [M + H]⁺ 316.1466, found 316.1464.

bis(3,5-dimethylphenyl)(morpholino)phosphine oxide (3ca)

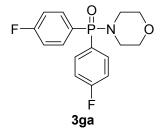

The compound **3ca** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 86% yield; mp = 122-124 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.49 (s, 2H), 7.46 (s, 2H), 7.12 (s, 2H), 3.71 (t, *J* = 4.5 Hz, 4H), 3.09-3.05 (m, 4H), 2.34 (s, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 138.3 (d, *J* = 12.9 Hz), 133.6 (d, *J* = 2.7 Hz), 130.5 (d, *J* = 126.9 Hz), 129.9 (d, *J* = 8.9 Hz), 67.2 (d, *J* = 6.6 Hz), 45.0, 21.3; ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 30.15. HRMS (ESI) calcd for C₂₀H₂₇NO₂P [M + H]⁺ 344.1779, found 344.1780.

bis(4-methoxyphenyl)(morpholino)phosphine oxide (3da)

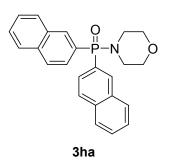
The compound **3da** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 76% yield; ¹**H NMR** (400 MHz, CDCl₃, ppm): $\delta = 7.80-7.75$ (m, 4H), 6.98–6.96 (m, 4H), 3.83 (s, 6H), 3.69 (t, J = 4.4 Hz, 4H), 3.07-3.03 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): $\delta = 162.4$ (d, J = 2.8 Hz), 134.0 (d, J = 10.4 Hz), 120.0 (d, J = 135.9 Hz), 114.2 (d, J = 13.3 Hz), 67.1 (d, J = 6.8 Hz), 55.2, 44.8; ³¹**P NMR** (162 MHz, CDCl₃, ppm) $\delta = 29.75$. HRMS (ESI) calcd for C₁₈H₂₃NO₄P [M + H]⁺ 348.1365, found 348.1364.


bis(3-methoxyphenyl)(morpholino)phosphine oxide (3ea)

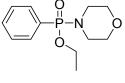
The compound **3ea** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 72% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.45–7.37 (m, 6H), 7.05–7.03 (m, 2H), 3.84 (s, 6H), 3.71 (t, *J* = 4.4 Hz, 4H), 3.10-3.06 (m, 4H); ¹³C


NMR (100 MHz, CDCl₃, ppm): $\delta = 158.7$ (d, J = 15.5 Hz), 131.1 (d, J = 127.9 Hz), 128.9 (d, J = 14.6 Hz), 123.3 (d, J = 8.8 Hz), 117.1 (d, J = 2.7 Hz), 116.3 (d, J = 10.4 Hz), 66.2 (d, J = 6.8 Hz), 54.4, 44.0; ³¹**P NMR** (162 MHz, CDCl₃, ppm) $\delta = 29.31$. HRMS (ESI) calcd for C₁₈H₂₃NO₄P [M + H]⁺ 348.1365, found 348.1363.

bis(4-chlorophenyl)(morpholino)phosphine oxide (3fa)

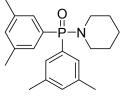

The compound **3fa** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 75% yield; mp = 139-141 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.82-7.77 (m, 4H), 7.47-7.45 (m, 4H), 3.71 (s, 4H), 3.06 (s, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 138.9 (d, *J* = 3.3 Hz), 133.8 (d, *J* = 9.9 Hz), 129.2 (d, *J* = 13.0 Hz), 129.0 (d, *J* = 131.1 Hz), 67.1 (d, *J* = 6.5 Hz), 45.0; ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 27.22. HRMS (ESI) calcd for C₁₆H₁₇Cl₂NO₂P [M + H]⁺ 356.0374, found 356.0377.

bis(4-fluorophenyl)(morpholino)phosphine oxide (3ga)


The compound **3ga** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 78% yield; ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.90-7.84$ (m, 4H), 7.19–7.15 (m, 4H), 3.71 (t, J = 4.2 Hz, 4H), 3.08-3.04 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 165.2$ (dd, J = 252.4 (C_{C,F}), 3.36 Hz), 134.8 (dd, J = 10.0, 8.9 Hz), 126.6 (dd, J = 132.8, 3.37 (C_{C,F}) Hz), 116.2 (dd, J = 21.2, 13.6 Hz), 67.1 (d, J = 6.6 Hz), 45.0; ³¹P NMR (162 MHz, CDCl₃, ppm) $\delta = 27.37$. HRMS (ESI) calcd for C₁₆H₁₇F₂NO₂P [M + H]⁺ 324.0965, found 324.0965.

morpholinodi(naphthalen-2-yl)phosphine oxide (3ha)

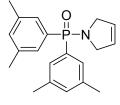
The compound **3ha** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 85% yield; ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.59$ (d, J = 13.9 Hz, 2H), 7.95–7.84 (m, 8H), 7.59–7.52 (m, 4H), 3.77 (s, 4H), 3.17 (s, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 135.1$ (d, J = 9.2 Hz), 134.7 (d, J = 2.1 Hz), 132.6 (d, J = 13.8 Hz), 128.9, 128.6, 128.5, 128.3, 127.3 (d, J = 78.7 Hz), 127.2, 126.6 (d, J = 9.3 Hz), 67.3(d, J = 6.7 Hz), 45.1; ³¹P NMR (162 MHz, CDCl₃, ppm) $\delta = 29.29$. HRMS (ESI) calcd for C₂₄H₂₃NO₂P [M + H]⁺ 388.1466, found 388.1467.


ethyl morpholino(phenyl)phosphinate (3ia)

3ia

The compound **3ia** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 88% yield; ¹**H NMR** (400 MHz, CDCl₃, ppm): $\delta = 7.76-7.71$ (m, 2H), 7.54–7.45 (m, 3H), 4.22–4.09 (m, 2H), 3.63 (s, 4H), 3.11-3.10 (m, 4H), 1.39 (t, J = 7.0 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): $\delta = 131.7$ (d, J = 2.9 Hz), 131.1 (d, J = 9.4 Hz), 129.7 (d, J = 172.5 Hz), 128.3 (d, J = 14.0 Hz), 66.8 (d, J = 5.7 Hz), 60.5 (d, J = 5.9 Hz), 40.9, 16.2 (d, J = 6.5 Hz); ³¹**P NMR** (162 MHz, CDCl₃, ppm) $\delta = 21.04$. HRMS (ESI) calcd for C₁₂H₁₉NO₃P [M + H]⁺ 256.1103, found 256.1103.

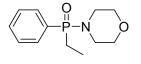
bis(3,5-dimethylphenyl)(piperidin-1-yl)phosphine oxide (3cb)



3cb

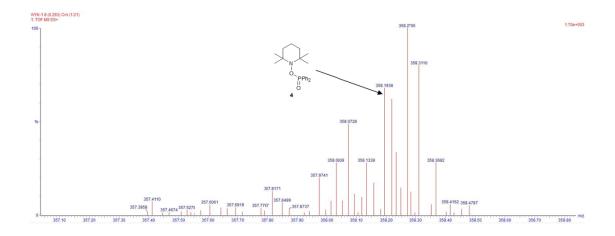
The compound **3cb** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 84% yield; mp = 145-146 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.50 (s, 2H), 7.47 (s, 2H), 7.09 (s, 2H), 3.02-2.98 (m, 4H), 2.33 (s, 12H), 1.63-1.56 (m, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 137.0 (d, *J* = 12.8 Hz), 132.2 (d, *J* = 2.8

Hz), 130.8 (d, J = 127.3 Hz), 128.8 (d, J = 8.9 Hz), 44.7, 25.2 (d, J = 6.8 Hz), 23.6, 20.3; ³¹P NMR (162 MHz, CDCl₃, ppm) $\delta = 29.89$. HRMS (ESI) calcd for C₂₁H₂₉NOP [M + H]⁺ 342.1987, found 342.1985.

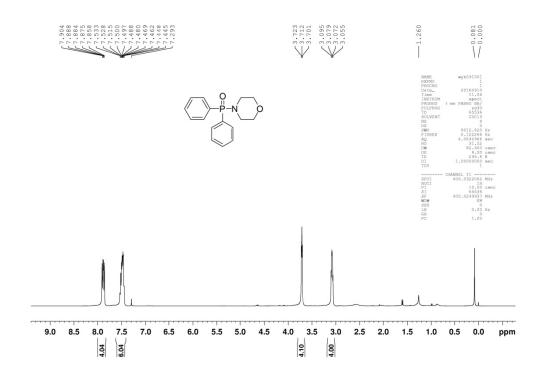

(2,5-dihydro-1H-pyrrol-1-yl)bis(3,5-dimethylphenyl)phosphine oxide (3ck)

The compound **3ck** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow solid: 86% yield; mp = 132-134 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.53 (s, 2H), 7.50 (s, 2H), 7.11 (s, 2H), 5.76 (s, 2H), 3.98 (d, *J* = 6.0 Hz, 4H), 2.34 (s, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 137.2 (d, *J* = 13.0 Hz), 132.4 (d, *J* = 2.8 Hz), 131.0 (d, *J* = 127.6 Hz), 128.8 (d, *J* = 9.3 Hz), 125.5 (d, *J* = 7.2 Hz), 53.2 (d, *J* = 3.4 Hz), 20.3; ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 25.86. HRMS (ESI) calcd for C₂₀H₂₅NOP [M + H]⁺ 326.1674, found 326.1672.

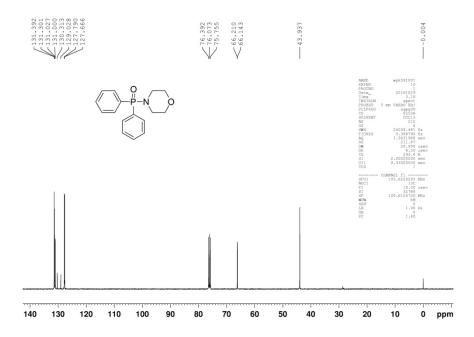
ethyl(morpholino)(phenyl)phosphine oxide (3ja)



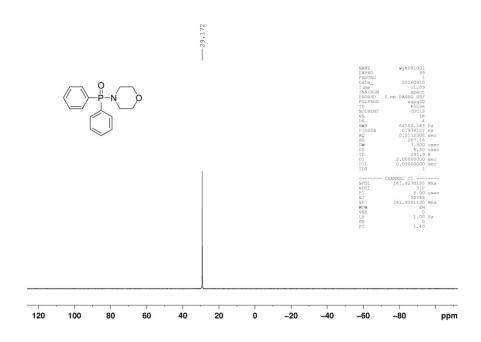
The compound **3ja** was prepared according to the general working procedure (4 h) and purified by column chromatography (ethyl acetate) to give the product as a yellow oil: 67% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.78-7.73 (m, 2H), 7.56-7.47 (m, 3H), 3.69 (t, *J* = 4.6 Hz, 4H), 3.12-3.01 (m, 4H), 2.09-1.96 (m, 2H), 1.14-1.06 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 130.9 (d, *J* = 2.5 Hz), 130.7 (d, *J* = 9.0 Hz), 129.5 (d, *J* = 118.9 Hz), 127.6 (d, *J* = 11.8 Hz), 66.1 (d, *J* = 6.8 Hz), 43.3, 19.0 (d, *J* = 91.7 Hz), 5.1 (d, *J* = 4.4 Hz); ³¹P NMR (162 MHz, CDCl₃, ppm) δ = 40.04. HRMS (ESI) calcd for C₁₂H₁₉NO₂P [M + H]⁺ 240.1153, found 240.1156.

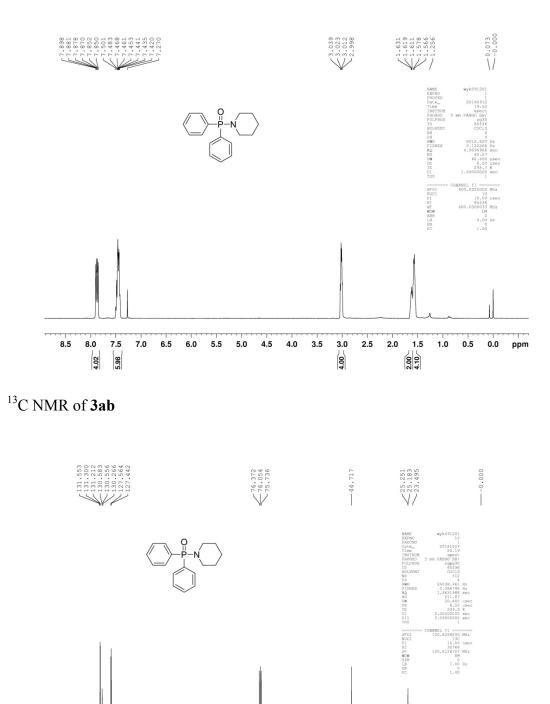

ESI-HRMS analysis for the TEMPO-P(O)Ph₂ adduct 4

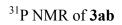
The adduct 4 was detected by ESI-HRMS measurement of the crude reaction mixture. HRMS (ESI) calcd for $C_{21}H_{29}NOP [M + H]^+$ 358.1936, found 358.1938.



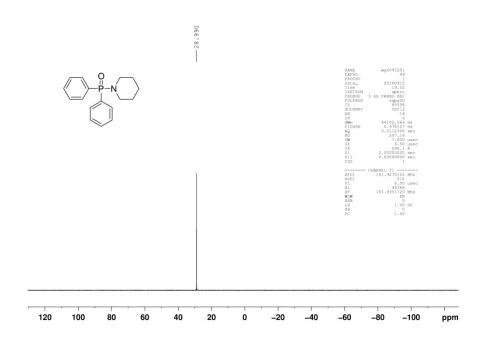
NMR spectra for the products


¹H NMR of **3aa**

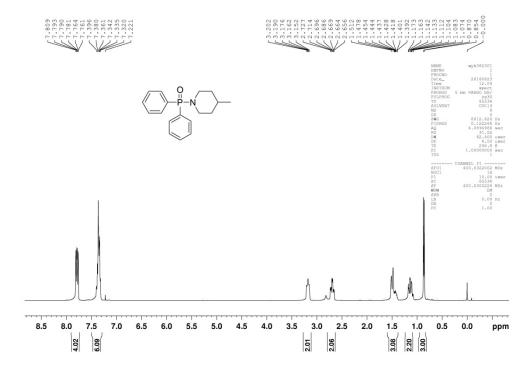

¹³C NMR of **3aa**

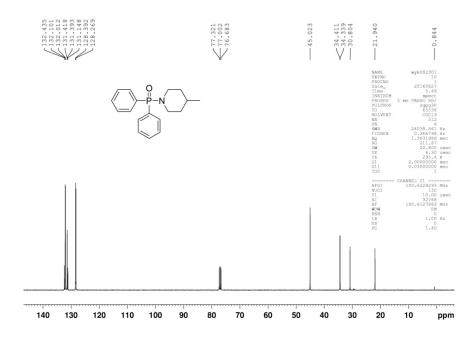


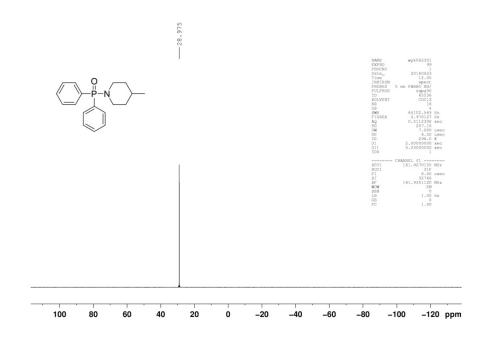
³¹P NMR of **3aa**

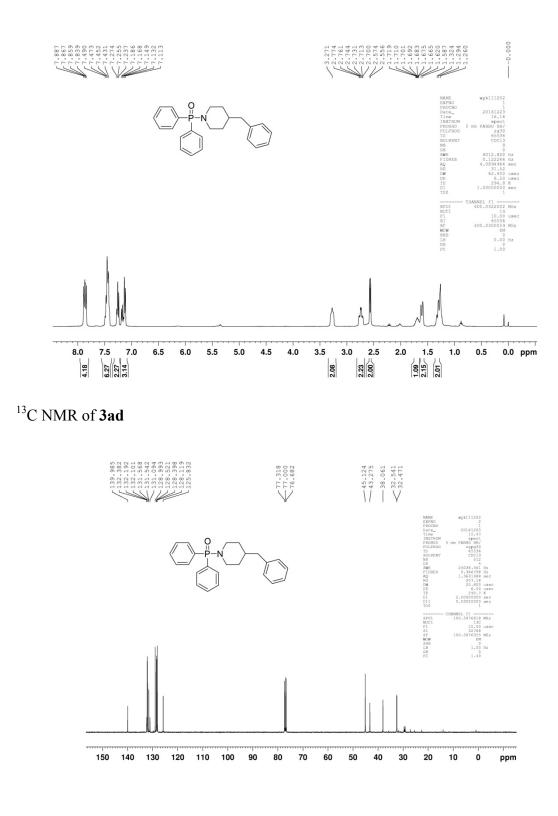


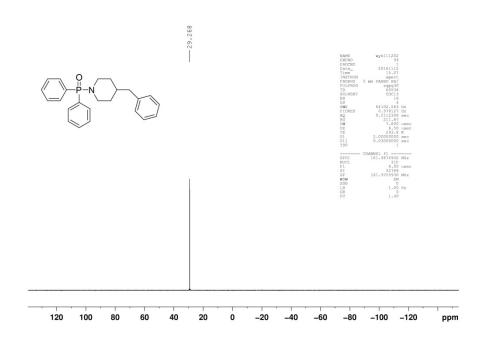
¹H NMR of **3ab**

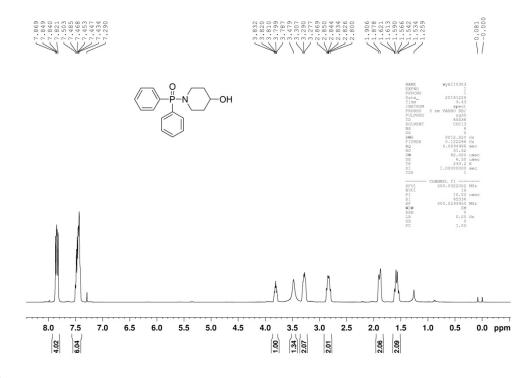


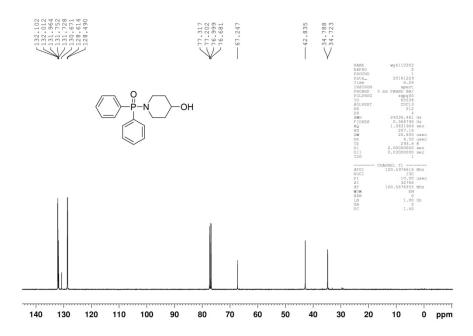

0 ppm

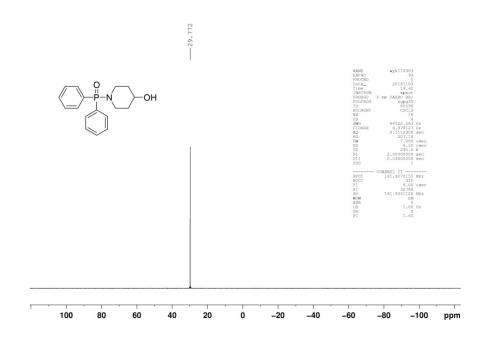

¹H NMR of **3ac**

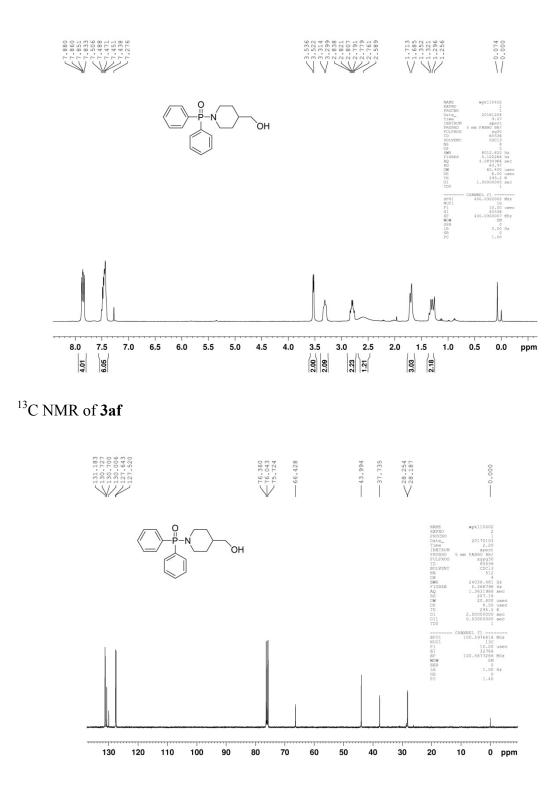

¹³C NMR of **3ac**


³¹P NMR of **3ac**

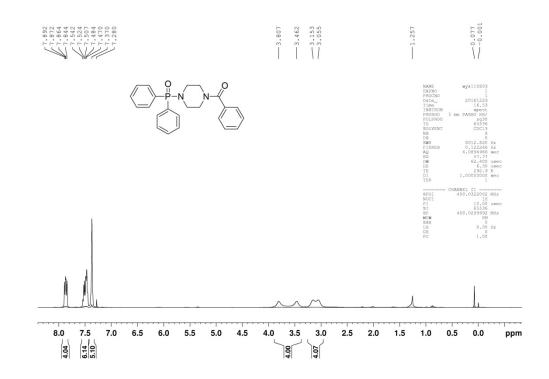

¹H NMR of **3ad**

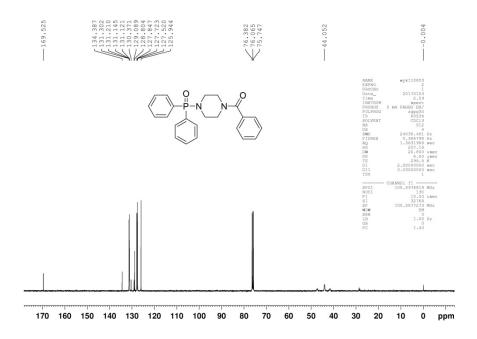

³¹P NMR of **3ad**

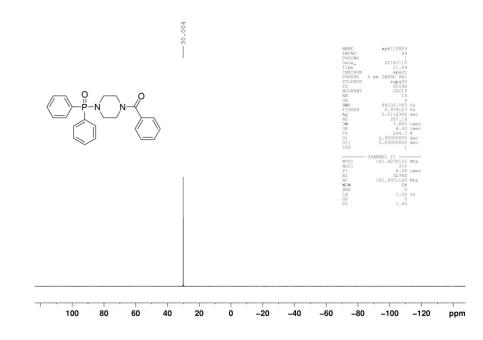

¹H NMR of **3ae**

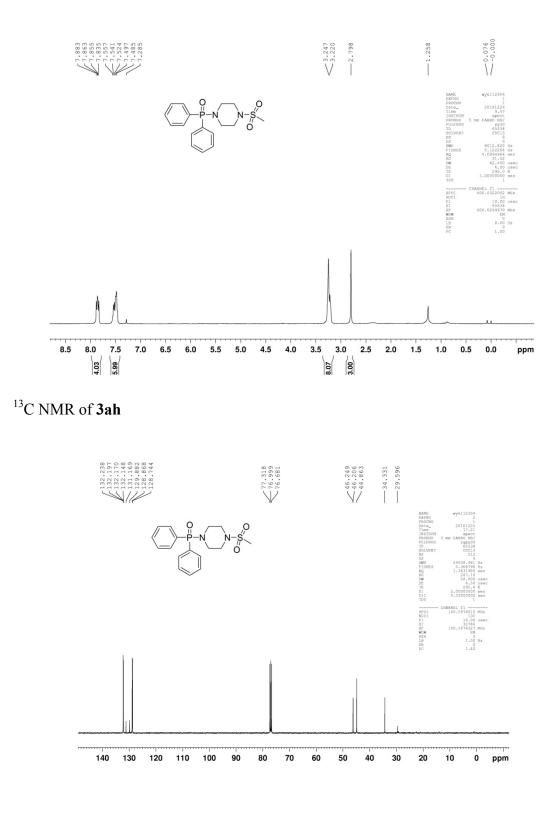

¹³C NMR of **3ae**

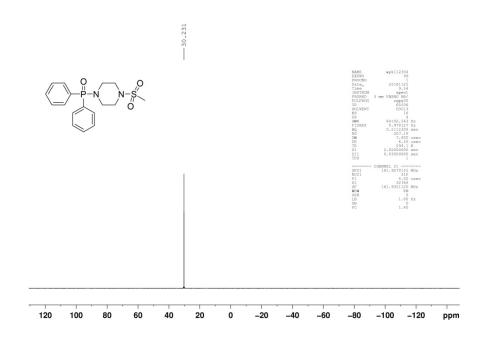

³¹P NMR of **3ae**

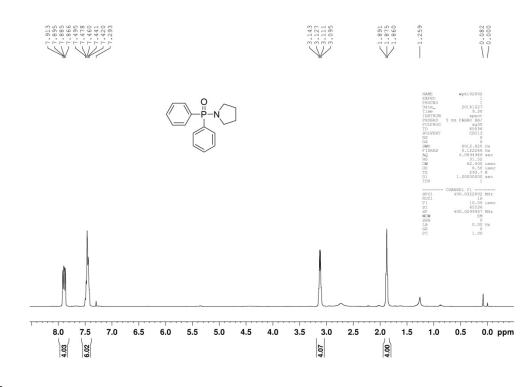

¹H NMR of **3af**

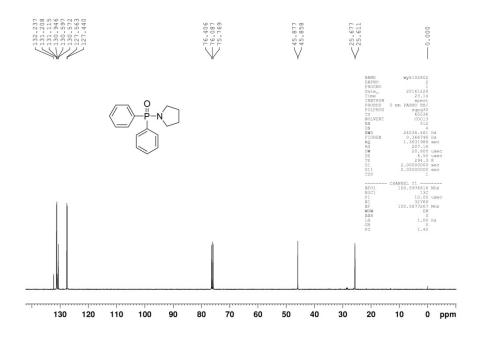

³¹P NMR of **3af**

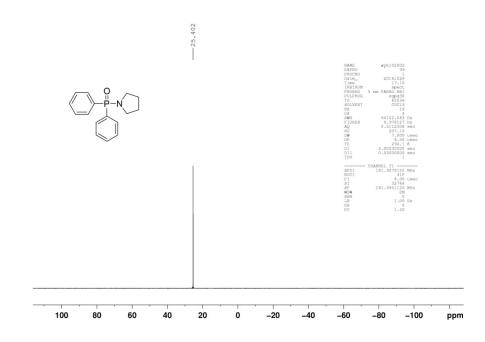

¹H NMR of **3ag**

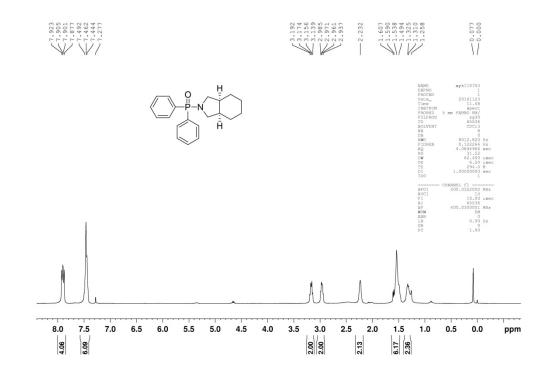

¹³C NMR of **3ag**

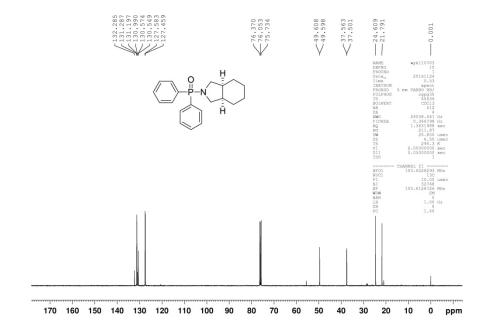

³¹P NMR of **3ag**

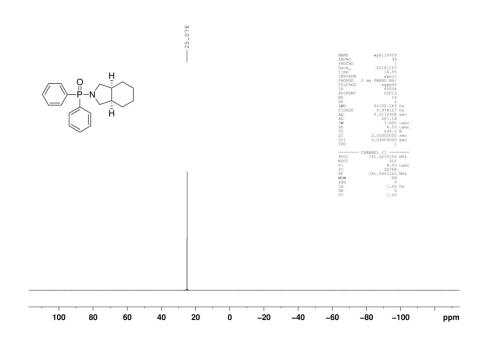

¹H NMR of **3ah**

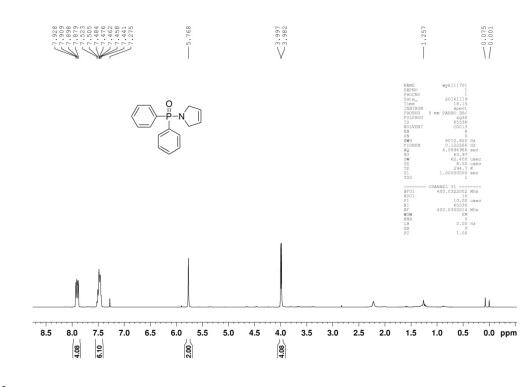

³¹P NMR of **3ah**

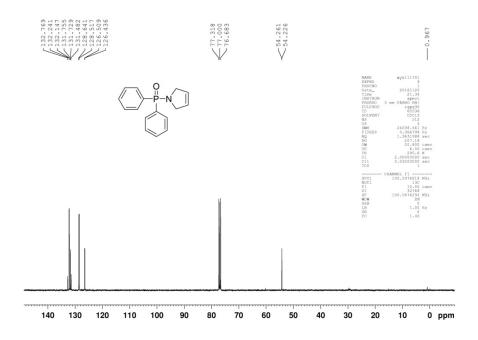

¹H NMR of **3ai**

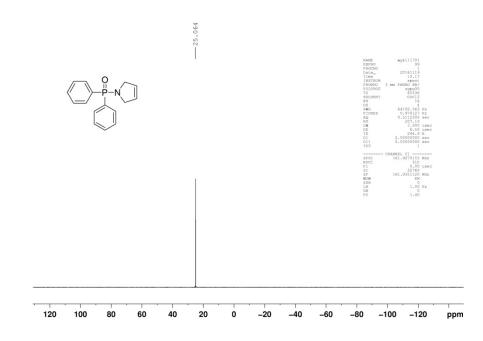

¹³C NMR of **3ai**


³¹P NMR of **3ai**

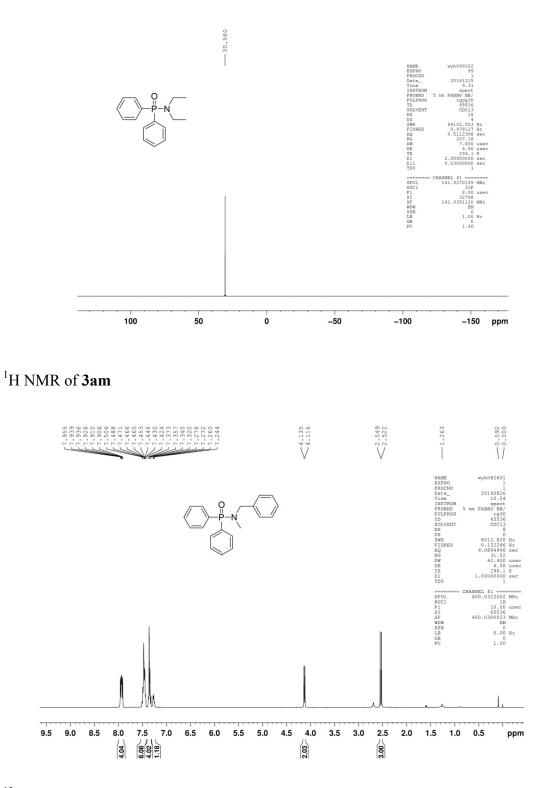

¹H NMR of **3aj**

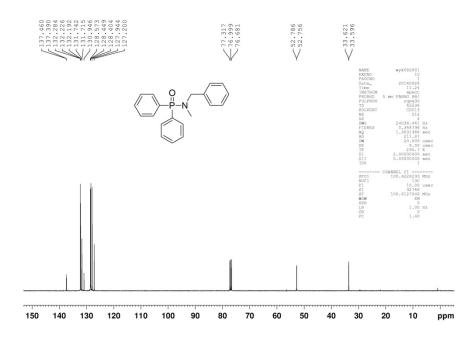

¹³C NMR of **3**aj

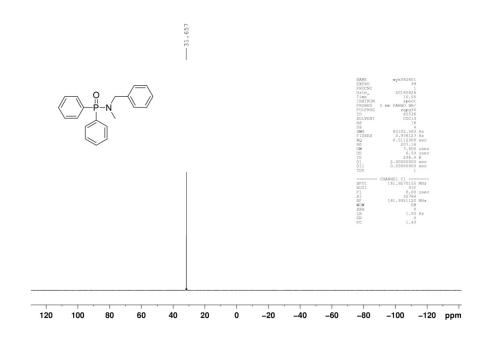

³¹P NMR of **3aj**

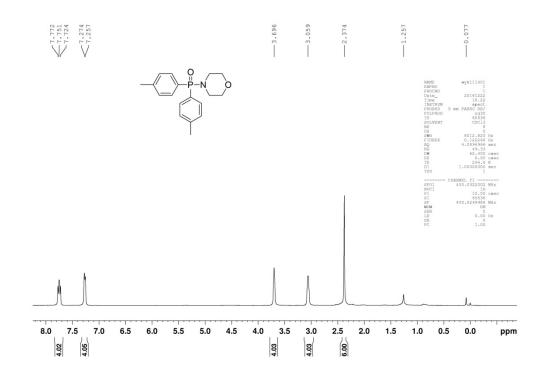

¹H NMR of **3ak**

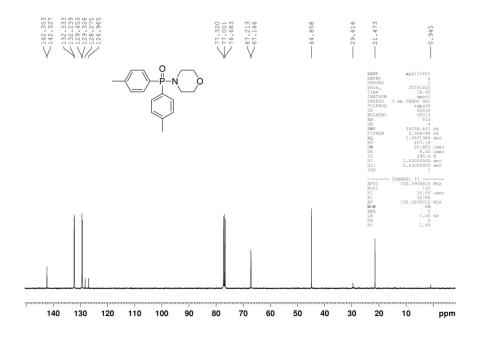

¹³C NMR of **3ak**

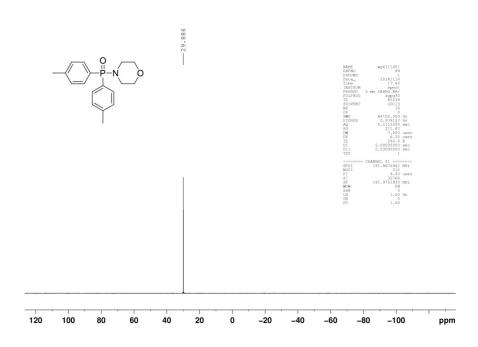

³¹P NMR of **3ak**

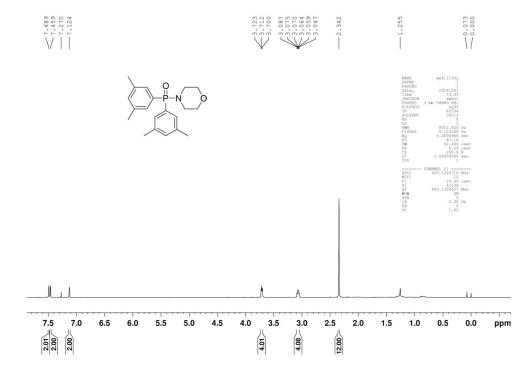

¹H NMR of **3al**

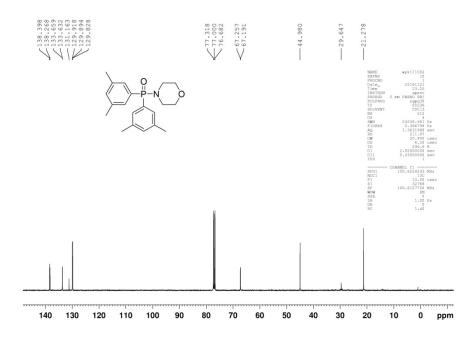

³¹P NMR of **3al**

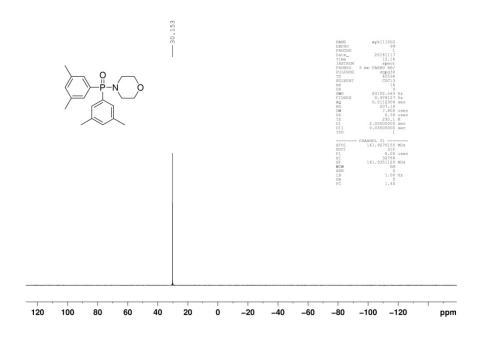

¹³C NMR of **3am**

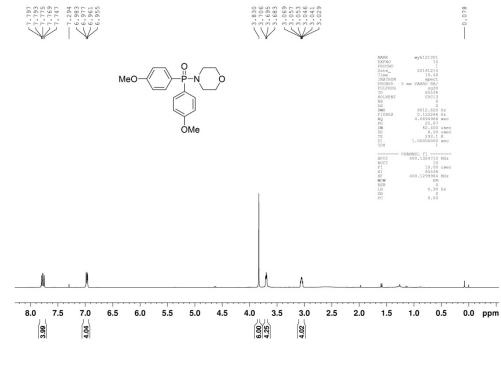

³¹P NMR of **3am**

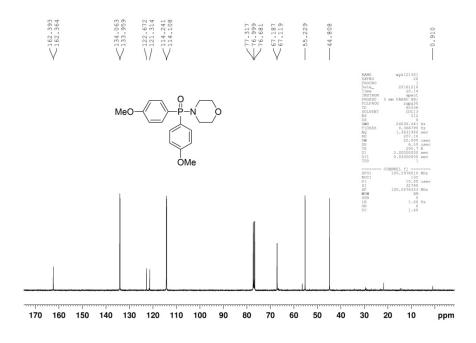

¹H NMR of **3ba**


¹³C NMR of **3ba**

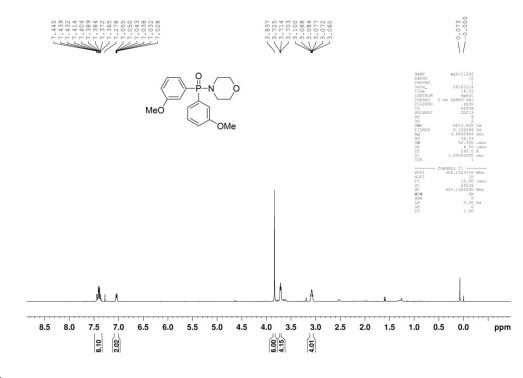

³¹P NMR of **3ba**

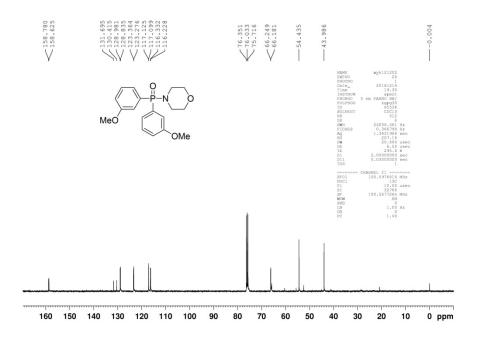

¹H NMR of **3ca**

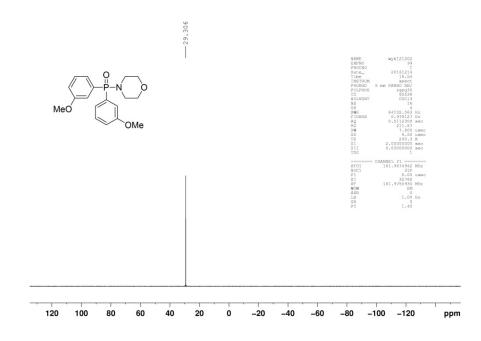

¹³C NMR of **3ca**

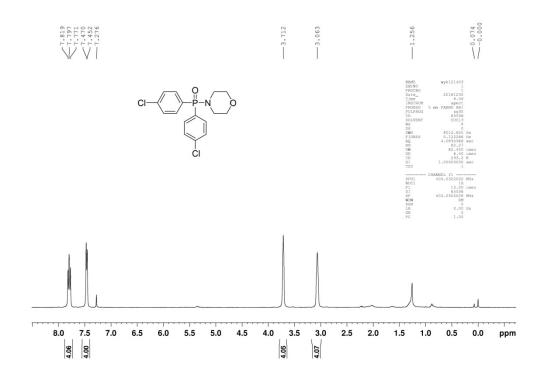

³¹P NMR of **3ca**

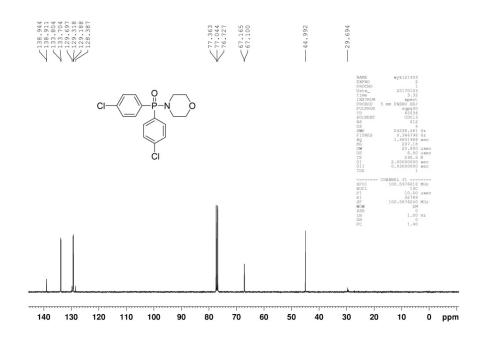
¹H NMR of **3da**

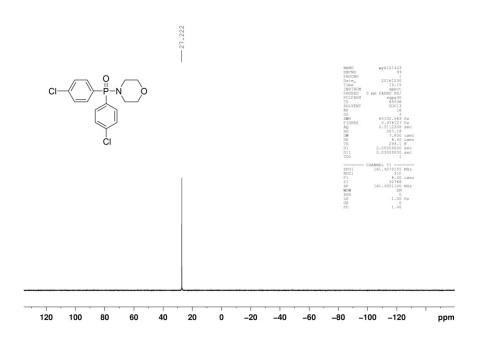

¹³C NMR of **3da**

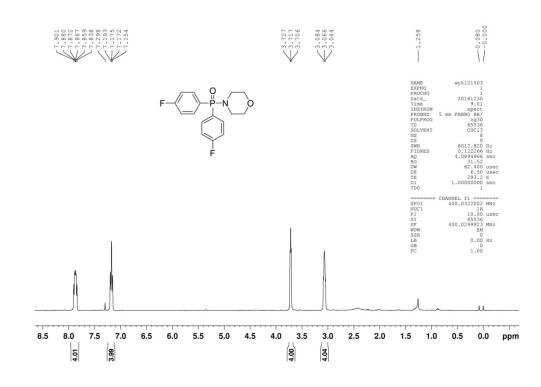

³¹P NMR of **3da**

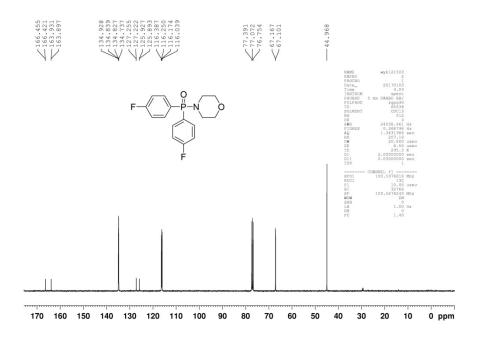

¹H NMR of **3ea**

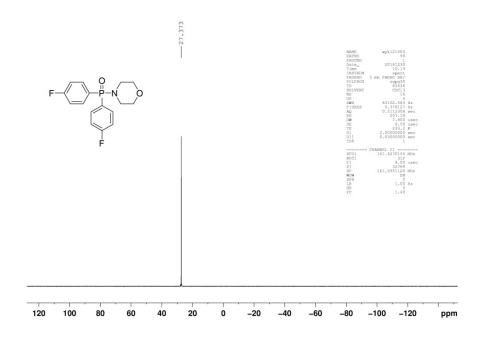

¹³C NMR of **3ea**


³¹P NMR of **3ea**

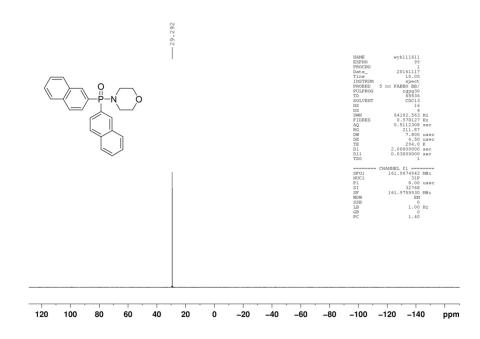

¹H NMR of **3fa**

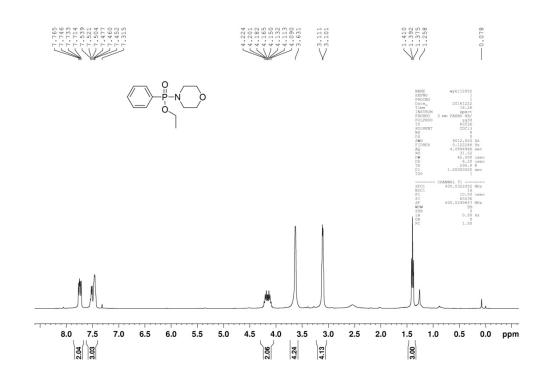

¹³C NMR of **3fa**

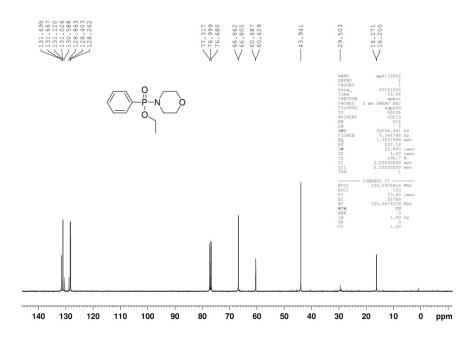

³¹P NMR of **3fa**

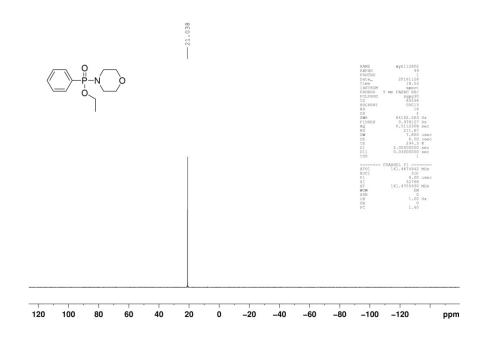

¹H NMR of **3ga**

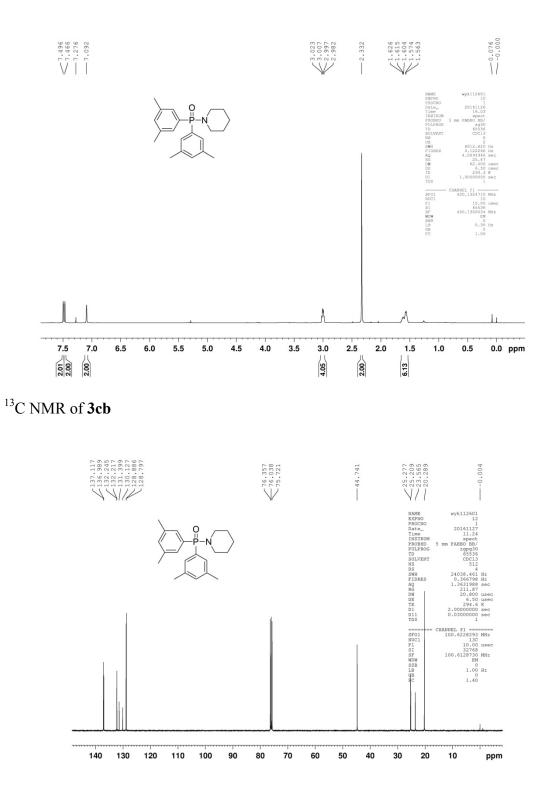
¹³C NMR of **3ga**

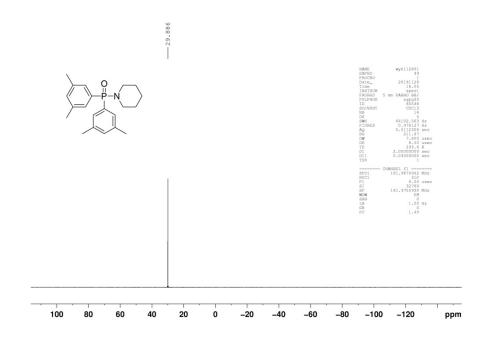

³¹P NMR of **3ga**

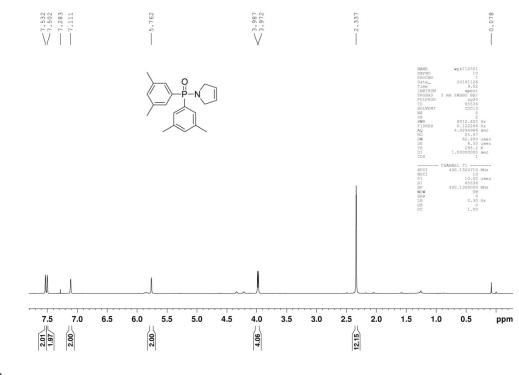

¹H NMR of **3ha**

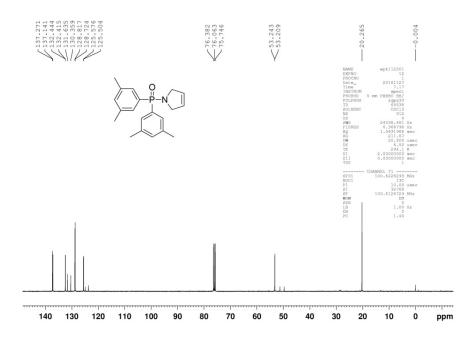

³¹P NMR of **3ha**

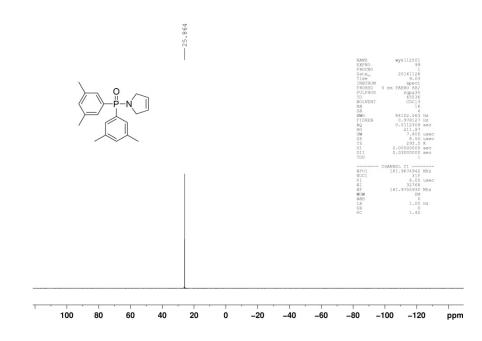

¹H NMR of **3ia**

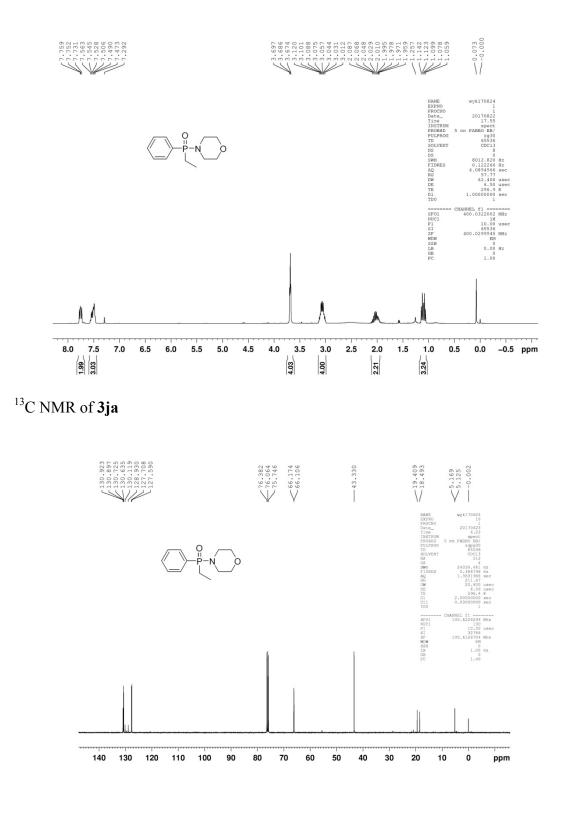

¹³C NMR of **3ia**

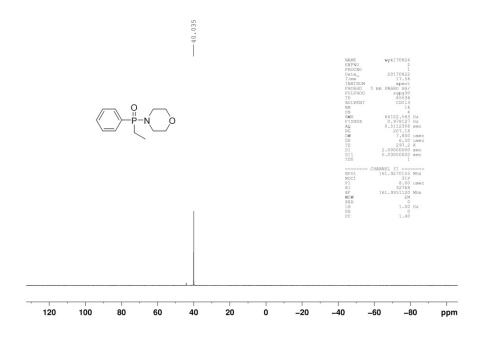

³¹P NMR of **3ia**


¹H NMR of **3cb**

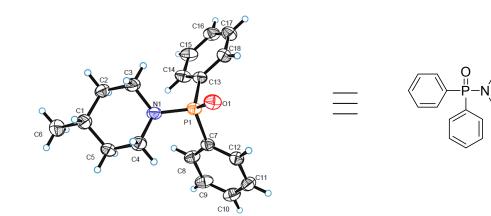

³¹P NMR of **3cb**


¹H NMR of **3ck**




³¹P NMR of **3ck**

¹H NMR of **3ja**



³¹P NMR of **3ja**

Crystal structure data

A single crystal for X-ray analysis of **3ac** was obtained by recrystallation from ethyl acetate / petroleum ether.

CCDC-1511510

Table 1 Crystal data and structure refinement for 3ac.			
Identification code	wyk161008		
Empirical formula	$C_{18}H_{22}NOP$		
Formula weight	299.33		
Temperature/K	292(2)		
Crystal system	triclinic		
Space group	P-1		

a/Å	8.8111(7)
b/Å	8.8406(6)
c/Å	11.0875(8)
$\alpha/^{\circ}$	71.938(6)
β/°	83.952(6)
γ/°	85.034(6)
Volume/Å ³	815.21(11)
Z	2
$\rho_{calc}g/cm^3$	1.219
μ/mm^{-1}	1.469
F(000)	320.0
Crystal size/mm ³	$0.180 \times 0.150 \times 0.100$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8.418 to 142.476
Index ranges	$-10 \le h \le 10, -9 \le k \le 10, -13 \le l \le 13$
Reflections collected	5167
Independent reflections	$3048 [R_{int} = 0.0328, R_{sigma} = 0.0340]$
Data/restraints/parameters	3048/0/191
Goodness-of-fit on F ²	1.082
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0676, wR_2 = 0.1760$
Final R indexes [all data]	$R_1 = 0.0746, wR_2 = 0.1887$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.39

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for wyk161008. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

x	У	Z	U(eq)
2131.8(6)	6576.8(7)	7435.0(6)	48.8(2)
1020(2)	7244(2)	8248.3(18)	62.2(5)
2161(2)	7343(2)	5869.9(19)	52.2(5)
4072(3)	6717(3)	7767(2)	50.5(5)
1894(2)	4483(3)	7703(2)	49.2(5)
996(3)	3678(3)	8779(2)	57.5(6)
4302(3)	7081(3)	8869(2)	60.5(6)
938(3)	7046(3)	5176(3)	60.4(6)
1573(3)	7039(3)	3860(3)	61.7(7)
5336(3)	6413(3)	7004(3)	62.9(6)
2640(3)	3636(3)	6926(3)	60.5(6)
2785(3)	8915(3)	5216(3)	61.6(6)
3464(3)	8953(3)	3903(3)	64.4(7)
863(3)	2042(3)	9076(3)	67.6(7)
2318(3)	8586(3)	3104(3)	63.5(7)
	2131.8(6) $1020(2)$ $2161(2)$ $4072(3)$ $1894(2)$ $996(3)$ $4302(3)$ $938(3)$ $1573(3)$ $5336(3)$ $2640(3)$ $2785(3)$ $3464(3)$ $863(3)$	$\begin{array}{ccccc} 2131.8(6) & 6576.8(7) \\ 1020(2) & 7244(2) \\ 2161(2) & 7343(2) \\ 4072(3) & 6717(3) \\ 1894(2) & 4483(3) \\ 996(3) & 3678(3) \\ 4302(3) & 7081(3) \\ 938(3) & 7046(3) \\ 1573(3) & 7039(3) \\ 5336(3) & 6413(3) \\ 2640(3) & 3636(3) \\ 2785(3) & 8915(3) \\ 3464(3) & 8953(3) \\ 863(3) & 2042(3) \\ \end{array}$	2131.8(6) $6576.8(7)$ $7435.0(6)$ $1020(2)$ $7244(2)$ $8248.3(18)$ $2161(2)$ $7343(2)$ $5869.9(19)$ $4072(3)$ $6717(3)$ $7767(2)$ $1894(2)$ $4483(3)$ $7703(2)$ $996(3)$ $3678(3)$ $8779(2)$ $4302(3)$ $7081(3)$ $8869(2)$ $938(3)$ $7046(3)$ $5176(3)$ $1573(3)$ $7039(3)$ $3860(3)$ $5336(3)$ $6413(3)$ $7004(3)$ $2640(3)$ $3636(3)$ $6926(3)$ $2785(3)$ $8915(3)$ $3903(3)$ $863(3)$ $2042(3)$ $9076(3)$

1598(3)	1222(3)	8309(3)	72.8(8)
5772(4)	7151(4)	9183(3)	71.3(8)
2476(3)	2017(4)	7217(3)	72.9(8)
7012(3)	6851(4)	8423(3)	73.1(8)
6807(3)	6488(4)	7326(3)	73.0(8)
3066(5)	8489(5)	1827(3)	89.3(10)
	5772(4) 2476(3) 7012(3) 6807(3)	5772(4) 7151(4) 2476(3) 2017(4) 7012(3) 6851(4) 6807(3) 6488(4)	5772(4)7151(4)9183(3)2476(3)2017(4)7217(3)7012(3)6851(4)8423(3)6807(3)6488(4)7326(3)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3ac. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
P1	40.9(4)	51.5(4)	58.3(4)	-22.0(3)	-5.6(2)	-4.4(2)
01	51.4(9)	66.7(11)	75.3(12)	-32.6(9)	-1.7(8)	-4.1(8)
N1	48(1)	52.0(11)	59.4(11)	-17.5(9)	-9.6(8)	-9.9(8)
C13	46.9(12)	47.8(12)	60.1(13)	-18.5(10)	-10.3(10)	-5.4(9)
C7	41.0(11)	53.9(12)	55.0(12)	-17.3(10)	-9.3(9)	-5.2(9)
C12	54.4(13)	65.1(15)	55.2(13)	-18.4(11)	-8(1)	-10.2(11)
C18	60.1(14)	66.8(15)	58.5(14)	-20.9(12)	-12.7(11)	-8.0(12)
C4	43.1(12)	68.1(15)	67.8(15)	-13.4(12)	-12.1(10)	-9.0(11)
C5	56.3(14)	68.3(15)	64.1(14)	-18.9(12)	-17.3(11)	-13.0(12)
C14	49.9(13)	69.9(16)	80.5(17)	-38.3(13)	-8.7(12)	-5.0(11)
C8	48.5(13)	59.1(14)	77.3(16)	-27.0(12)	4.9(11)	-10.5(11)
C3	70.4(16)	45.5(12)	71.3(16)	-17.0(11)	-15.3(12)	-7.9(11)
C2	63.9(15)	57.6(14)	68.6(15)	-9.2(12)	-10.3(12)	-17.9(12)
C11	69.1(17)	60.3(15)	67.3(16)	-5.6(12)	-9.1(13)	-17.7(13)
C1	60.7(15)	60.6(14)	66.8(15)	-11.7(12)	-16.0(12)	-6.1(12)
C10	65.0(17)	51.1(14)	99(2)	-14.0(14)	-15.8(15)	-9.4(12)
C17	71.1(18)	79.4(19)	68.7(17)	-21.5(14)	-26.9(14)	-11.4(14)
C9	57.1(15)	60.4(15)	110(2)	-40.3(16)	1.4(15)	-5.2(12)
C16	56.7(16)	70.5(17)	95(2)	-19.4(15)	-31.1(15)	-7.6(13)
C15	44.5(13)	75.6(18)	107(2)	-39.2(17)	-7.8(13)	-1.9(12)
C6	97(2)	103(3)	67.6(18)	-21.0(17)	-4.2(17)	-25(2)

Table 4 Bond Lengths for 3ac.	
-------------------------------	--

Atom	Atom	Length/Å	Atom	Atom	Length/Å
P1	01	1.4712(19)	C4	C5	1.508(4)
P1	N1	1.654(2)	C5	C1	1.527(4)
P1	C13	1.809(2)	C14	C15	1.392(4)
P1	C7	1.809(2)	C8	C9	1.383(4)
N1	C4	1.474(3)	C3	C2	1.506(4)
N1	C3	1.478(3)	C2	C1	1.528(4)
C13	C14	1.385(4)	C11	C10	1.361(5)

C13	C18	1.394(3)
C7	C12	1.389(3)
C7	C8	1.390(4)
C12	C11	1.392(4)
C18	C17	1.387(4)

Table 5 Bond Angles for 3ac.

Atom	Atom	Atom	Angle/°
01	P1	N1	119.37(11)
01	P1	C13	111.30(11)
N1	P1	C13	103.76(10)
01	P1	C7	111.76(11)
N1	P1	C7	103.40(10)
C13	P1	C7	106.12(11)
C4	N1	C3	110.89(19)
C4	N1	P1	120.60(16)
C3	N1	P1	120.66(16)
C14	C13	C18	118.7(2)
C14	C13	P1	122.86(18)
C18	C13	P1	118.3(2)
C12	C7	C8	119.0(2)
C12	C7	P1	117.93(19)
C8	C7	P1	122.92(18)
C7	C12	C11	120.1(3)

Table 6 Torsion Angles for 3ac.

A	В	С	D	Angle/°
01	P1	N1	C4	-72.9(2)
C13	P1	N1	C4	162.6(2)
C7	P1	N1	C4	51.9(2)
01	P1	N1	C3	73.4(2)
C13	P1	N1	C3	-51.1(2)
C7	P1	N1	C3	-161.73(19)
01	P1	C13	C14	-169.4(2)
N1	P1	C13	C14	-39.8(2)
C7	P1	C13	C14	68.8(2)
01	P1	C13	C18	13.4(2)
N1	P1	C13	C18	143.0(2)
C7	P1	C13	C18	-108.4(2)
01	P1	C7	C12	-14.0(2)
N1	P1	C7	C12	-143.65(18)
C13	P1	C7	C12	107.48(19)

C1	C6	1.522(4)
C10	C9	1.388(5)
C17	C16	1.367(4)
C16	C15	1.383(5)

Atom	Atom	Atom	Angle/°
C17	C18	C13	120.3(3)
N1	C4	C5	109.75(19)
C4	C5	C1	112.4(2)
C13	C14	C15	120.5(3)
C9	C8	C7	120.3(3)
N1	C3	C2	109.4(2)
C3	C2	C1	112.8(2)
C10	C11	C12	120.4(3)
C6	C1	C5	111.2(3)
C6	C1	C2	111.7(3)
C5	C1	C2	109.2(2)
C11	C10	C9	120.1(3)
C16	C17	C18	120.4(3)
C8	C9	C10	120.0(3)
C17	C16	C15	120.1(2)
C16	C15	C14	119.9(3)

A	В	С	D	Angle/°
C3	N1	C4	C5	61.4(3)
P1	N1	C4	C5	-149.27(19)
N1	C4	C5	C1	-56.8(3)
C18	C13	C14	C15	-0.7(4)
P1	C13	C14	C15	-177.9(2)
C12	C7	C8	C9	0.6(4)
P1	C7	C8	C9	176.6(2)
C4	N1	C3	C2	-61.3(3)
P1	N1	C3	C2	149.45(19)
N1	C3	C2	C1	56.8(3)
C7	C12	C11	C10	-0.7(4)
C4	C5	C1	C6	175.1(2)
C4	C5	C1	C2	51.4(3)
C3	C2	C1	C6	-175.0(3)
C3	C2	C1	C5	-51.6(3)

01	P1	C7	C8	170.0(2)	C12	C11	C10	C9	-0.6(4)
N1	P1	C7	C8	40.3(2)	C13	C18	C17	C16	-0.6(4)
C13	P1	C7	C8	-68.5(2)	C7	C8	C9	C10	-1.9(4)
C8	C7	C12	C11	0.7(3)	C11	C10	C9	C8	1.9(5)
P1	C7	C12	C11	-175.50(19)	C18	C17	C16	C15	0.6(5)
C14	C13	C18	C17	0.6(4)	C17	C16	C15	C14	-0.7(5)
P1	C13	C18	C17	178.0(2)	C13	C14	C15	C16	0.8(5)

Table 7 Hydrogen	Atom	Coordinates	(Å×10 ⁴)	and	Isotropic	Displacement	Parameters
$(Å^{2} \times 10^{3})$ for 3ac.							

(11 10)101 040.				
Atom	x	У	z	U(eq)
H12	481	4232	9302	69
H18	3466	7278	9396	73
H4A	122	7869	5114	73
H4B	518	6027	5635	73
H5A	752	6879	3400	74
H5B	2324	6153	3930	74
H14	5201	6156	6272	75
H8	3252	4159	6207	73
H3A	3565	9106	5699	74
H3B	1977	9747	5155	74
H2A	4328	8180	3978	77
H2B	3841	9999	3469	77
H11	269	1507	9803	81
H1	1518	9450	2943	76
H10	1513	128	8518	87
H17	5915	7405	9915	86
Н9	2953	1461	6681	87
H16	7994	6890	8643	88
H15	7651	6295	6804	88
H6A	3871	7664	1965	134
H6B	3482	9491	1356	134
H6C	2316	8249	1354	134

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF

Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) shelxl

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.	CIF dictionary
Please wait while processing	Interpreting this report
Structure factor report	

Datablock: shelxl

Bond precision: C-C = 0.0041 A Wavelength=1.54184								
Cell:	a=8.81	8.8111(7) b=8.8406(6) c=11.0875(8)						
	alpha=71.938(6)beta=83.952(6)gamma=85.034(6)							
Temperature:	Temperature: 292 K							
		Calculated	d		Reported			
Volume		815.21(11))		815.21(11)			
Space group		P -1			P -1			
Hall group		-P 1			-P 1			
Moiety formu	ıla	C ₁₈ H ₂₂ N C	P		?			
Sum formula		C ₁₈ H ₂₂ N C	P		C ₁₈ H ₂₂ N O P			
Mr		299.34			299.33			
Dx,g cm-3		1.219			1.219			
Z		2			2			
Mu (mm-1)		1.469			1.469			
F000		320.0			320.0			
F000'		321.36						
h,k,lmax		10,10,13			10,10,13			
Nref		3162			3048			
Tmin,Tmax		0.768,0.80	63		0.427,1.000			
Tmin'		0.768						
Correction method= # Reported T Limits: Tmin=0.427 Tmax=1.000 AbsCorr =								
MULTI-SCAN								
Data completeness= 0.964 Theta(max)= 71.238								
R(reflections) = 0.0676(2605) wR2(reflections) = 0.1887(3048)								
S = 1.082		Npar= 2	191					

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds0.00412 Ang.PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L=0.60036Report

Alert level G

PLAT072_ALERT_2_G SHELXL FirstParameter in WGHTUnusually Large0.12 ReportPLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal ..(Note)0.006 DegreePLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L=0.60079 NotePLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.9 Note

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
4 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low

1 ALERT type 4 Improvement, methodology, query or suggestion

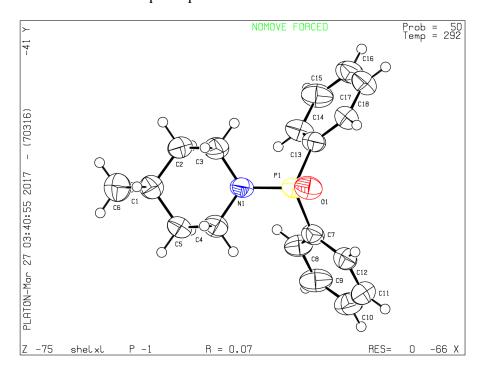
0 ALERT type 5 Informative message, check

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT340_shelxl
;
PROBLEM: Low Bond Precision on C-C Bonds ...... 0.00412 Ang.
RESPONSE: ...
;
_vrf_PLAT911_shelxl
;
PROBLEM: Missing # FCF Refl Between THmin & STh/L= 0.600 36 Report
RESPONSE: ...
;
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 26/02/2017; check.def file version of 21/02/2017 Datablock shelxl- ellipsoid plot

Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry