Supporting Information

For

I₂-Mediated Oxidative Bicyclization of 4-Pentenamines to Prolinol Carbamates with CO₂ Incorporating Oxyamination of C=C Bond

Sheng Wang,^[a] Xiaowei Zhang,^[a] Chengyao Cao,^[a] Chao Chen,^{*[a]} and Chanjuan Xi^{*[a,b]}

^[a]MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China

^[b]State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

Table of contents

General information	3
Experimental procedure	3
Spectrum data	14
Mechanistic studies	20
Extension synthesis of prolinol carbamates	22
Reference	24
¹ H NMR, ¹³ C NMR, ¹⁹ F NMR and NOE spectra	25
Crystal data and structure of 2a	46

General information

MeCN, DMF (*N*,*N*-dimethylformamide), DCM (dichloromethane) were dried by 4 Å molecular sieves. THF and Et₂O were purified by solvent purification system. Unless otherwise mentioned, reagents purchased were used without further purification. ¹H NMR and ¹³C NMR spectra were recorded with 600 MHz, 400 MHz and 300 MHz spectrometer. CDCl₃ was selected as the solvent and residual proton resonance of CDCl₃ was referenced using the 7.26 ppm in ¹H NMR and 77.16 ppm in ¹³C NMR. Coupling constants (J) were obtained in Hertz (Hz). The abbreviation of s, d, t and m means singlet, doublet, triplet, and multiplet, respectively. HRMS were recorded with ESI in positive ion mode on IT-TOF instrument. Pent-4-en-1-amine (1q) was prepared according reported literature.¹

Experiment procedure

Synthesis of substrate 1a, 1f, 1n

Representative procedure²

100 mL Schlenk tube with NaH (22 mmol) was evacuated and back-filled with N₂ and 25 mL DMF was added. A solution of 2,2-diphenylacetonitrile (20mmol) in 10 mL DMF was injected via syringe. Mixture was stirred at room temperature for 1 h and turned yellow. Then Schlenk tube was cooled to 0 °C followed by addition of allyl bromide (22 mmol). The reaction was warmed to room temperature and stirred for 12 h, diluted with ice water and extracted with EtOAc for 3 times. Organic layer combined was washed with saturated NaCl solution, dried by Na₂SO₄, evaporated and isolated by silica gel flash chromatography (petroleum ether/ EtOAc).

100mL Schlenk tube containing LiAlH₄ (64 mmol) was evacuated and back-filled with

 N_2 followed by addition of 30mL ether. The purified nitrile (16 mmol) in 10 mL ether was added to suspension at 0 °C. Then the reaction was stirred at 30 °C for 12 h followed by addition of 5M NaOH slowly in 0 °C to quench the reaction. After extraction with EtOAc for 3 times, combined organic layer was washed with saturated NaCl solution, dried by Na₂SO₄, evaporated and purified by silica gel flash chromatography (petroleum ether/ EtOAc).

2,2-Diphenylpent-4-en-1-amine(1a)³

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.30 (m, 4H), 7.17-7.21 (m, 6H), 5.36-5.43 (m, 1H), 5.05 (d, *J* = 17.0 Hz, 1H), 4.97 (d, *J* = 10.2 Hz, 1H), 3.32 (s, 2H), 2.93 (d, 2H, *J* = 6.0 Hz), 1.01 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) 146.4, 134.7, 128.4, 128.2, 126.1, 117.9, 51.5, 48.6, 41.3.

Ph H

2-Phenylpent-4-en-1-amine(1j)³

¹H NMR (400 MHz, CDCl₃) δ 7.36-7.28 (m, 2H), 7.25-7.15 (m, 3H), 5.69 (ddt, *J* = 17.3, 10.1, 7.0 Hz, 1H), 4.99 (d, *J* = 17.0 Hz, 1H), 4.94 (d, *J* = 10.1 Hz, 1H), 2.96 (dd, *J* = 12.6, 5.2 Hz, 1H), 2.85 (dd, *J* = 12.7, 8.7 Hz, 1H), 2.75-2.62 (m, 1H), 2.47-2.30 (m, 2H), 1.08-0.95 (m, 1H).

¹³C NMR (76 MHz, CDCl₃) δ 143.2, 136.7, 128.6, 128.1, 126.6, 116.2, 49.5, 47.6, 38.5. Ph $\sim NH_2$ Me

4-Methyl-2,2-diphenylpent-4-en-1-amine(1n)³

¹H NMR (400 MHz, CDCl₃) δ 7.29-7.24 (m, 4H), 7.22-7.14 (m, 6H), 4.84-4.79 (m, 1H), 4.59 (s, 1H), 3.41 (s, 2H), 2.92 (s, 2H), 1.07 (s, 3H), 0.74 (s, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 147.0, 143.0, 128.5, 128.1, 126.1, 115.3, 51.4, 48.0, 44.1, 24.5.

Synthesis of 1b, 1h, 1i, 1k, 1p

Representative procedure²

100 mL Schlenk tube was evacuated and back-filled with N₂ with addition of Pr_2NH (20 mmol) in 20 mL THF. The reaction was cooled to -78 °C followed by addition of *n*BuLi (1.6 M, 20 mmol) and stirred for 15 min. Then solution of cyclopentanecarbonitrile (20 mmol) in 10 mL THF was injected to LDA solution with stirring at -78 °C for 30 minutes. After dropwise addition of Allyl bromide (22 mmol), the resulting solution was warmed to room temperature and stirred for 16 h. Then the mixture was treated with saturated solution of NH₄Cl and extracted with EtOAc for 3 times. The combined organic layer was washed with saturated NaCl solution, dried by Na₂SO₄, evaporated and purified by silica gel flash chromatography.

100mL Schlenk tube containing LiAlH₄ (60 mmol) was evacuated and back-filled with N_2 followed by addition of 30mL ether. Solution of purified nitrile (15 mmol) in 10 mL ether was added to suspension at 0 °C. Then the reaction was stirred at 30 °C for 12 h followed by addition of 5M NaOH at 0 °C to quench the reaction. After extraction with EtOAc for 3 times, the combined organic layer was washed with saturated NaCl solution, dried by Na₂SO₄, concentrated and purified by silica gel flash chromatography (petroleum ether/ EtOAc).

Bn NH₂ Bn

2,2-Dibenzylpent-4-en-1-amine(1b)

¹H NMR (400 MHz, CDCl₃) δ 7.34-7.22 (m, 10H), 6.10-6.02 (m, 1H), 5.24-5.10 (m, 2H), 2.72 (dd, *J* = 5.5, 2.0 Hz, 4H), 2.53 (d, *J* = 1.6 Hz, 2H), 2.11-2.06 (m, 2H), 1.10 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 138.7, 135.2, 130.8, 128.2, 126.2, 118.1, 47.0, 42.7, 41.7, 38.7.

(1-Allylcyclopentyl)methanamine (1h)⁴

¹H NMR (400 MHz, CDCl₃) δ5.84-5.71 (m, 1H), 5.10-4.97 (m, 2H), 2.47 (s, 2H), 2.07-2.01 (m, 2H), 1.53-1.59 (m, 4H), 1.33-1.39 (m, 4H), 1.09 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ135.6, 116.0, 49.2, 46.0, 40.9, 34.1, 24.9.

(1-Allylcyclohexyl)methanamine (1i)³

¹H NMR (400 MHz, CDCl₃) δ 5.87-5.74 (m, 1H), 5.11-4.98 (m, 2H), 2.58-2.48 (m, 2H), 2.12-2.05 (m, 2H), 1.48-1.25 (m, 11H), 0.97 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 135.1, 116.9, 48.9, 39.9, 37.1, 33.3, 26.5, 21.6. Ph / ^{-NH}₂

Ph Me

2-Methyl-2-phenylpent-4-en-1-amine (1k)

¹H NMR (400 MHz, CDCl₃) δ 7.36-7.28 (m, 4H), 7.21-7.17 (m, 1H), 5.61-5.48 (m, 1H), 5.03-4.91 (m, 2H), 2.95 (d, *J* = 13.1 Hz, 1H), 2.72 (d, *J* = 13.1 Hz, 1H), 2.50 (dd, *J* = 13.8, 6.4 Hz, 1H), 2.27 (dd, *J* = 13.8, 8.1 Hz, 1H), 1.29 (s, 3H), 1.01 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 134.7, 128.3, 126.7, 125.9, 117.3, 53.4, 44.6, 43.0, 22.2.

Ph NH₂ Ph

2,2-Diphenylhex-5-en-1-amine(1p)³

¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.5 Hz, 4H), 7.23-7.17 (m, 6H), 5.84-5.69 (m, 1H), 5.03-4.87 (m, 2H), 3.34 (s, 2H), 2.25-2.14 (m, 2H), 1.76 (dt, *J* = 10.5, 6.7 Hz, 2H), 0.80 (s, 2H).

¹³C NMR (400 MHz, CDCl₃) 23.4, 34.2, 35.9, 49.1, 51.7, 114.6, 125.9, 128.0, 128.2, 138.6, 146.5

Representative procedure⁵

250mL sealed tube containing $Pd(OAc)_2$ (0.5 mmol) and SPhos (1.0 mmol) was evacuated and back-filled with N₂ for 3 times. After injection of dry dioxane under N₂ flows, the resulting solution was stirred at room temperature for 30 min. The tube was added chloroacetonitrile (20 mmol), phenylboronic acid (30 mmol), Na₂CO₃ (45 mmol) and H₂O (6 mL) in 50 mL dioxane via syringe and sealed after addition. Then the reaction was stirred at 60 °C for 12 h and cooled to room temperature. The mixture was filtrated with a pad of silica gel using EtOAc. After concentration under reduced pressure, the crude product was purified by silica gel flash chromatography (petroleum ether/ EtOAc).

100mL sealed tube containing $Pd(OAc)_2$ (0.25 mmol), 2,2'bis(dicyclohexylphosphino)-1,1'-biphenyl (DCPB) (0.5 mmol) was evacuated and back-filled with N₂ for 3 times, followed by addition of 10 mL dry dioxane and stirring for 30 min at room temperature. Then arylacetonitrile (5 mmol), aryl brimide (7.5 mmol), K₃PO₄ (15 mmol) in dry dioxane (20 mL) were added under N₂ flow and the reaction was conducted at 80 °C for 24 h. After cooling to room temperature, the mixture was filtrated with a pad of silica gel with EtOAc. The filtrate was concentrated and purified by silica gel flash chromatography (petroleum ether/ EtOAc).

Synthesis of substrate 1d, 1e, 1f

Procedure follows the synthesis of 1b, 1h, 1i, 1k, 1p

2,2-Di-p-tolylpent-4-en-1-amine (1d)

¹H NMR (600 MHz, CDCl₃) δ 7.12-7.04 (m, 8H), 5.46-5.39 (m, 1H), 5.06 (dd, *J* = 17.1, 1.7 Hz, 1H), 5.01-4.95 (m, 1H), 3.29 (d, *J* = 1.3 Hz, 2H), 2.90 (d, *J* = 7.0 Hz, 2H), 2.33 (s, 6H), 0.85 (s, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 143.4, 135.5, 135.0, 128.9, 128.1, 117.6, 50.8, 48.8, 41.3, 21.0.

2,2-Bis(4-fluorophenyl)pent-4-en-1-amine (1e)

¹H NMR (400 MHz, CDCl₃) δ 7.11 (ddd, J = 8.9, 5.4, 2.7 Hz, 4H), 6.96 (t, J = 8.7 Hz, 4H), 5.35 (ddt, J = 17.1, 10.1, 7.1 Hz, 1H), 5.02 (dd, J = 17.1, 1.7 Hz, 1H), 4.97 (d, J = 10.1 Hz, 1H), 3.26 (s, 2H), 2.86 (d, J = 7.0 Hz, 2H), 0.77 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.24 (d, J = 245.4 Hz), 141.87 (d, J = 3.1 Hz), 134.1,

129.7 (d, *J* = 7.7 Hz), 118.2, 115.0 (d, *J* = 21.0 Hz), 50.6, 48.8, 41.4.

2,2-Di(thiophen-3-yl)pent-4-en-1-amine (1f)

¹H NMR (400 MHz, CDCl₃) δ 7.24-7.18 (m, 2H), 7.03-6.99 (m, 2H), 6.81 (d, J = 5.0 Hz, 2H), 5.48 (ddt, J = 17.1, 10.0, 7.0 Hz, 1H), 5.04 (d, J = 17.1 Hz, 1H), 4.98 (d, J = 10.1 Hz, 1H), 3.20 (s, 2H), 2.83 (d, J = 6.9 Hz, 2H), 1.06 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 146.8, 134.5, 127.7, 125.4, 121.0, 117.9, 49.5, 48.5, 41.9.

Representative Synthesis procedure of substrates 11, 1m⁶

100mL schlenk tube was evacuated and backfilled with N_2 3 times. Allyl magnesium bromide (30 mmol) was injected and diluted with Et₂O. The reaction was added cyclopentene oxide (10 mmol) dropwise at room temperature over 15 min and refluxed for 3h.After cooling to room temperature, the solution was quenched with saturated NH₄Cl solution and extracted with EtOAc for 3 times. The combined organic layer was washed with brine, dried by Na₂SO₄, concentrated for next step without further purification.

Then 250 mL Schlenk tube with phthalimide (12.35 mmol) and PPh₃ (12.35 mmol) was evacuated and backfilled with N_2 for 3 times followed by addition of alcohol in THF (60 mL) and DEAD (40% solution in toluene, 13.3 mmol). The mixture was stirred at room temperature for 22 h. After removal of solvent in vaccum, the residue was triturated with PE/Et₂O (2:1) until complete precipitation of the solid. The solid was filtered off and washed with the same mixture of solvents. The combined organic layers were evaporated in vaccum and purified by silica gel flash chromatography (petroleum ether/ EtOAc).

To a solution of phthalimide (8 mmol) in MeOH (10 mL) was added a solution of hydrazine monohydrate (9.6 mmol) in methanol (10 mL). The resulting solution was refluxed for 3 h. Then the reaction was evaporated followed by addition of CH_2Cl_2 and white solid appeared. The suspension was filtrated and the separated organic layer was mixed with water and acidified (pH < 2) with 1 M HCl. After separation, the aqueous phase basified with solid KOH (pH > 10) and extracted with EtOAc for 3 times, dried

by Na₂SO₄, evaporated and product was obtained without further purification.

2-Allylcyclopentanamine (11)

¹H NMR (400 MHz, CDCl₃) δ 5.81 (ddt, *J* = 17.0, 10.1, 6.9 Hz, 1H), 5.09-5.00 (m, 1H), 4.98-4.91 (m, 1H), 3.32-3.24 (m, 1H), 2.18 (dt, *J* = 14.3, 7.1 Hz, 1H), 2.04 (dt, *J* = 14.3, 7.2 Hz, 1H), 1.86-1.65 (m, 4H), 1.52 (ddt, *J* = 9.5, 7.4, 4.5 Hz, 1H), 1.44-1.31 (m, 2H), 1.11 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 138.3, 115.0, 54.2, 44.4, 34.8, 34.1, 28.7, 21.9.

2-Allylcyclohexanamine (1m)

¹H NMR (400 MHz, CDCl₃) δ 5.80-5.67 (m, 1H), 5.02-4.91 (m, 2H), 2.99-2.91 (m, 1H), 2.08-2.00 (m, 1H), 1.98-1.89 (m, 1H), 1.61-1.46 (m, 5H), 1.39-1.17 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.7, 115.5, 49.5, 41.0, 36.3, 33.4, 26.4, 24.8, 21.0.

Synthesis procedure of substrate 1g⁷

250 mL sealed tube was evacuated and back-filled with N_2 for 3 times. Dimethyl malonate (20 mmol) in 80mL DMSO was added to sealed tube under N_2 flows. Then K_2CO_3 was added and the reaction was stirred at room temperature for 10 minutes. After completion of basification, allyl bromide (24 mmol) in 20 mL DMSO was added dropwise. Stirred at room temperature for 14 h, the reaction was quenched with water, extracted with EtOAc for 3 times, dried by Na_2SO_4 , evaporated and purified by silica gel flash chromatography (petroleum ether/ EtOAc).

100mL Schlenk tube containing NaH (9.9 mmol) was evacuated and back-filled with

 N_2 for 3 times followed by addition of 30 mL THF. After addition of dimethyl 2allylmalonate (9 mmol), the suspension was stirred for 30 min at 0 °C. Then the mixture was added N-chloromethylphthalimide (9 mmol) and stirred at room temperature for 16 h. After quenching by saturated NH₄Cl solution, the mixture was extracted with EtOAc for 3 times and combined organic layer was dried by Na₂SO₄ and evaporated under vacuum. Petroleum ether was added to afford unsolvable white solid, and crude product was obtained after filtration.

Crude dimethyl 2-allyl-2-((1,3-dioxoisoindolin-2-yl)methyl)malonate (8 mmol) was added to a solution of hydrazine monohydrate (9.6 mmol) in methanol (20 mL). And the resulting solution was refluxed for 3 h. Then the reaction was evaporated followed by addition of CH_2Cl_2 and eliminated white solid after filtration. The organic layer was acidified (pH < 2) with 1 M HCl. After separation, the aqueous phase was basified with solid KOH (pH > 10) and extracted with EtOAc for 3 times. The organic layers was combined, washed with saturated NaCl solution, dried by Na₂SO₄ and dimethyl 2-allyl-2-(aminomethyl)malonate was obtained after evaporation.

MeO₂C NH₂ MeO₂C

Dimethyl 2-allyl-2-(aminomethyl)malonate (1g)

¹H NMR (600 MHz, CDCl₃) δ 5.62-5.53 (m, 1H), 5.05-4.96 (m, 2H), 3.63 (s, 6H), 2.99 (s, 2H), 2.56 (d, *J* = 7.4 Hz, 2H), 1.14 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 170.9, 132.3, 119.0, 59.9, 52.3, 44.9, 36.5.

Synthesis procedure of 1c⁸

250 mL Schlenk tube was evacuated and back-filled with N₂, *i*PrNH₂ (60 mml, 8.4mL) and THF (45mL) was added. The resulting solution was injected *n*BuLi (1.6M in hexane, 60 mmol) via syringe at -78°C and stirred for 30min. Then the LDA solution was stored at 0 °C. Another 250 mL Schlenk tube was evacuated and back-filled with N₂followed by addition of MeCN (20 mmol) and THF (10 mL). The resulting solution cooled to -78 °C followed by addition of a third of prepared LDA solution (30.3 mL) and stirred for 15 min. Allyl bromide (20mmol) was added and the mixture was warmed

to room temperature with stirring for 30 min. The reaction was cooled to -78 °C again with addition of another equivalent LDA solution and stirred for 15 min. Then the reaction was added allyl bromide (20mmol) again and warmed to room temperature with stirring. The reaction was cooled to -78 °C once more followed by addition remaining LDA solution with 15 min stirring. The mixture was added allyl bromide (20 mmol) and warmed to room with stirring for 12 h and quenched with water. After extraction with EtOAc for 3 times, combined organic layer was washed with brine and dried by Na₂SO₄ followed by removal of solvent under vacuum and purified by silica gel flash chromatography (petroleum ether/ EtOAc).

100mL Schlenk tube containing LiAlH₄ (20 mmol) was evacuated and back-filled with N_2 followed by addition of 15mL ether. Solution of purified nitrile (5 mmol) in 5 mL ether was added to suspension at 0 °C. Then the reaction was stirred at 30 °C for 12 h and slowly quenched by 5M NaOH at 0°C. After extraction with EtOAc for 3 times, combined organic layer was washed with saturated NaCl solution and dried by Na₂SO₄, evaporated and purified by silica gel flash chromatography (petroleum ether/ EtOAc).

2,2-Diallylpent-4-en-1-amine(1c)⁸

¹H NMR (400 MHz, CDCl₃) δ 5.87-5.76 (m, 3H), 5.09-5.02 (m, 6H), 2.49 (d, *J* = 1.4 Hz, 2H), 2.04-1.98 (m, 6H), 1.06 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 134.6, 117.7, 47.5, 40.7, 39.2.

General procedure for oxyamination in MeCN

25 mL Schlenk tube was evacuated and backfilled with CO_2 for 3 times. Amine (0.5 mmol) in MeCN (5 mL) was added under flow of CO_2 , followed by addition of DBU (1.0 mmol). After stirring for 10 min, I₂ (0.5 mmol) was added and the reaction was conducted at room temperature for 16 h. Quenched with water, the reaction was extracted with EtOAc for 3 times and washed with saturated Na₂S₂O₃ solution and brine. The combined organic layer was dried by Na₂SO₄, evaporated and isolated by silica gel flash chromatography (petroleum ether/ EtOAc).

General procedure for oxyamination in EtOH or EtOAc

25 mL Schlenk tube was evacuated and backfilled with CO_2 for 3 times. Amine (0.5 mmol) in EtOH or EtOAc (5 mL) was added under flow of CO_2 , followed by addition of DBU (1.0 mmol). After stirring for 10 min, I₂ (0.5 mmol) was added and the reaction was conducted at room temperature for 16 h. The reaction was monitored by NMR in CDCl₃ with CH₂Br₂ as internal standard.

Spectrum data

6,6-Diphenyltetrahydropyrrolo[**1,2-c**]**oxazol-3(1H)-one** (**2a**)⁹: White solid, yield: 84%, 117 mg, R_f = 0.30 (PE : EA=3:1), mp: 179-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, *J* = 9.2, 5.0, 1.8 Hz, 4H), 7.24-7.17 (m, 6H), 4.48 (t, *J* = 8.6 Hz, 1H), 4.21 (d, *J* = 11.4 Hz, 1H), 4.16 (dd, *J* = 8.9, 4.8 Hz, 1H), 4.05 (ddt, *J* = 10.0, 8.6, 4.9 Hz, 1H), 3.91 (d, *J* = 11.4 Hz, 1H), 2.54 (dd, *J* = 11.8, 5.1 Hz, 1H), 2.37 (dd, *J* = 11.7, 10.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 145.5, 128.7, 128.6, 127.0, 126.9, 126.8, 126.7, 68.0, 58.1, 57.8, 57.2, 43.7. IR (neat) v_{max} cm⁻¹ 1754; HRMS (ESI) calcd for C₁₈H₁₇NO₂ [M+H]⁺ 280.1332, found: 280.1334

6,6-Dibenzyltetrahydropyrrolo[**1,2-c**]**oxazol-3(1H)-one(2b):** Colorless oil, yield: 65%, 100 mg, $R_f = 0.28$ (PE:EA=3:1). ¹H NMR (600 MHz, CDCl₃) δ 7.34-7.25 (m, 6H), 7.20 (d, 7.5 Hz, 2H), 7.14 (d, 7.5 Hz, 2H), 4.31 (t, J = 8.4 Hz, 1H), 3.98 (dd, J = 8.8, 4.3 Hz, 1H), 3.69 (d, J = 11.7 Hz, 1H), 3.51-3.45 (m, 1H), 3.21 (d, J = 11.7 Hz, 1H), 2.86-2.73 (m, 4H), 2.03 (dd, J = 12.7, 6.2 Hz, 1H), 1.54 (dd, J = 12.7, 9.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 137.7, 137.3, 130.7, 130.6, 128.6, 128.5, 126.9, 68.5, 58.3, 54.0, 50.0, 46.1, 44.2, 41.1. IR (neat) v_{max} cm⁻¹ 1747; HRMS (ESI) calcd for C₂₀H₂₁NO₂ [M+H]⁺ 308.1645, found: 308.1643.

6,6-Diallyltetrahydropyrrolo[**1,2-c**]**oxazol-3(1H)-one (2c):** White solid, yield: 83%, 86 mg, R_f = 0.29 (PE:EA=3:1), mp: 29-31 °C. ¹H NMR (600 MHz, CDCl₃) δ 5.78-5.62 (m, 2H), 5.13-5.01 (m, 4H), 4.42 (t, *J* = 8.3 Hz, 1H), 4.08-3.99 (m, 2H), 3.45 (d, *J* = 11.8 Hz, 1H), 2.91 (d, *J* = 11.8 Hz, 1H), 2.17-2.10 (m, , 4H), 1.88 (dd, *J* = 12.8, 6.5 Hz, 1H), 1.39 (dd, *J* = 12.8, 9.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 161.3, 133.6, 133.5, 119.0, 118.9, 68.1, 58.2, 55.2, 47.8, 43.0, 42.1, 41.5. IR (neat) v_{max} cm⁻¹ 1746;

HRMS (ESI) calcd for C₁₂H₁₇NO₂ [M+H]⁺ 208.1332 found: 208.1331.

6,6-Di-p-tolyltetrahydropyrrolo[**1,2-c**]**oxazol-3(1H)-one (2d):** White solid, yield: 88%, 135 mg, R_f = 0.28 (PE:EA=3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.07 (m, *J* = 3.7, 3.1 Hz, 8H), 4.45 (t, *J* = 8.6 Hz, 1H), 4.19-4.12 (m, 2H), 4.09-4.00 (m, 1H), 3.91 (d, *J* = 11.4 Hz, 1H), 2.53 (dd, *J* = 11.8, 5.2 Hz, 1H), 2.40-2.33 (m, 1H), 2.31 (d, *J* = 1.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 142.7, 136.3, 136.2, 129.2, 129.2, 126.7, 126.4, 68.0, 58.0, 57.3, 57.1, 43.6, 20.9, 20.8. IR (neat) v_{max} cm⁻¹ 1755; HRMS (ESI) calcd for C₂₀H₂₁NO₂ [M+H]⁺ 308.1645, found: 308.1644.

6,6-Bis(4-fluorophenyl)tetrahydropyrrolo[**1,2-c**]**oxazol-3(1H)-one** (2e): Light yellow oil, yield: 65 %, 102 mg, $R_f = 0.32$ (PE:EA=3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (dt, J = 8.3, 5.3 Hz, 4H), 6.99 (td, J = 8.5, 5.7 Hz, 4H), 4.52 (t, J = 8.7 Hz, 1H), 4.19 (dd, J = 9.0, 4.9 Hz, 1H), 4.14 (d, J = 11.5 Hz, 1H), 4.05 (tt, J = 10.0, 5.0 Hz, 1H), 3.86 (d, J = 11.5 Hz, 1H), 2.49 (dd, J = 11.8, 5.2 Hz, 1H), 2.40-2.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ , 161.8, 161.7 (d, J = 248.5 Hz), 161.6 (d, J = 248.5 Hz), 141.3 (d, J = 2.9 Hz), 141.1 (d, J = 3.1 Hz), 128.6 (d, J = 7.9 Hz), 128.3 (d, J = 8.0 Hz), 115.7 (d, J = 14.1 Hz), 115.5 (d, J = 14.2 Hz), 68.1, 58.1, 57.5, 57.0, 43.9. ¹⁹F NMR (565 MHz, CDCl₃) δ -115.18 , -115.63. IR (neat) v_{max} cm⁻¹ 1754; HRMS (ESI) calcd for C₁₈H₁₅F₂NO₂ [M+Na]⁺ 338.0963, found: 338.0967.

6,6-Di(thiophen-3-yl)tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one(2f): White solid, yield: 68 %, 99 mg, R_f = 0.19 (PE:EA=3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 2H), δ 7.04 (dd, J = 2.9, 1.4 Hz, 1H), 7.01 (dd, J = 2.9, 1.4 Hz, 1H), 6.91-6.83 (m, 2H), 4.49 (t, J = 8.1 Hz, 1H), 4.19-4.02 (m, 3H), 3.91 (d, J = 11.6 Hz, 1H), 2.62 (dd, J

= 12.3, 5.6 Hz, 1H), 2.31 (dd, J = 12.3, 8.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.56, 146.34, 145.84, 127.11, 126.82, 126.75, 126.60, 120.51, 120.41, 68.06, 58.48, 58.22, 52.71, 44.83. IR (neat) v_{max} cm⁻¹ 1748; HRMS (ESI) calcd for C₁₄H₁₃NO₂S₂ [M+H]⁺ 292.0460, found: 292.0463.

Dimethyl 3-oxotetrahydropyrrolo[1,2-c]oxazole-6,6(1H)-dicarboxylate (2g): Light yellow oil, yield: 47 %, 57 mg, R_f = 0.33 (PE:EA=1:1). ¹H NMR (400 MHz, CDCl₃) δ 4.53-4.48 (m, 1H), 4.26-4.20 (m, 2H), 4.14-4.06 (m, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 3.66 (d, *J* = 12.8 Hz, 1H), 2.59 (dd, *J* = 13.4, 6.7 Hz, 1H), 2.21 (dd, *J* = 13.4, 8.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 170.3, 161.0, 67.6, 60.8, 58.5, 53.6, 53.5, 52.5, 38.9. IR (neat) v_{max} cm⁻¹ 1728; HRMS (ESI) calcd for $C_{10}H_{13}NO_2$ [M+H]⁺ 244.0816, found: 244.0817.

Dihydro-1'H-spiro[cyclopentane-1,6'-pyrrolo[1,2-c]oxazol]-3'(5'H)-one (2h): Colorless oil, yield: 81%, 73 mg, R_f = 0.23 (PE:EA=3:1). ¹H NMR (400 MHz, CDCl₃) δ 4.51-4.44 (m, 1H), 4.11-4.01 (m, 2H), 3.45 (dd, *J* = 11.2, 3.5 Hz, 1H), 2.99 (dd, *J* = 11.2, 3.7 Hz, 1H), 1.94-1.87 (m, 1H), 1.67-1.47 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 68.4, 58.9, 57.9, 52.5, 43.9, 38.4, 38.3, 24.3, 24.2. IR (neat) v_{max} cm⁻¹ 1744; HRMS (ESI) calcd for C₁₀H₁₅NO₂ [M+H]⁺ 182.1176 found: 182.1178.

Dihydro-1'H-spiro[cyclohexane-1,6'-pyrrolo[1,2-c]oxazol]-3'(5'H)-one (2i): Light yellow oil, yield: 70%, 68 mg, R_f = 0.30 (PE:EA=3:1). ¹H NMR (400 MHz, CDCl₃) δ 4.47 (t, J = 8.2 Hz, 1H), 4.10-4.06 (m, 1H), 4.05-4.00 (m, 1H), 3.44 (d, J = 11.5 Hz, 1H), 2.94 (d, J = 11.5 Hz, 1H), 1.92 (dd, J = 12.5, 6.3 Hz, 1H), 1.52-1.32 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 68.4, 58.1, 57.2, 45.6, 44.0, 38.1, 36.4, 25.6, 24.0, 23.3. IR (neat) v_{max} cm⁻¹ 1755; HRMS (ESI) calcd for C₁₁H₁₇NO₂ [M+H]⁺ 196.1332,

6-Phenyltetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (2j): Yellow oil, yield: 46%, 47 mg, R_f = 0.45 (PE:EA=1:1) ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.6 Hz, 2H), 7.24 (dd, *J* = 10.3, 7.3 Hz, 3H), 4.54 (t, *J* = 8.5 Hz, 1H), 4.27 (dd, *J* = 9.0, 3.2 Hz, 1H), 4.13-4.07 (m, 1H), 3.72-3.62 (m, 2H), 3.61-3.57 (m, 1H), 2.39 (dt, *J* = 10.8, 5.2 Hz, 1H), 1.70 (q, *J* = 11.2 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 141.0, 128.9, 127.2, 127.1, 67.4, 60.3, 52.9, 46.6, 40.1. IR (neat) v_{max} cm⁻¹ 1750; HRMS (ESI) calcd for C₁₂H₁₃NO₂ [M+H]⁺ 204.1019, found: 204.1020.

6-Methyl-6-phenyltetrahydropyrrolo[1,2-c]oxazol-3(1H)-one 4-63 (2k): Light yellow oil, yield: 69%, mg, $R_f = 0.35$ (PE:EA=3:1), major:minor=5:4. ¹H NMR (600 MHz, CDCl₃) major product: δ 7.36-7.30 (m, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.25-7.20 (t, J = 8.2 Hz, 2H), 4.58-4.54 (m, 1H), 4.29 (ddd, J = 12.7, 10.5, 4.7 Hz, 1H), 4.21-4.12 (m, 1H), 3.93 (d, J = 11.0 Hz, 1H), 3.40 (d, J = 11.0 Hz, 1H), 2.23 (dd, J = 11.9, 5.3 Hz, 1H), 1.95 (t, J = 11.3 Hz, 1H), 1.46 (s, 3H); minor product: δ 7.36-7.30 (m, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.25-7.20 (t, J = 8.2 Hz, 2H), 4.21-4.12 (m, 2H) , 3.78 (d, J = 11.6 Hz, 1H), 2.45 (dd, J = 12.9, 7.2 Hz, 1H), 1.86 (dd, J = 12.8, 7.0 Hz, 1H) , 1.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) major product: δ 161.6, 128.7, 126.6, 125.6, 68.11, 59.3, 58.7, 49.4, 44.8, 29.8. minor product: δ 162.06 , 146.70 , 128.8, 126.7, 125.8, 69.5, 58.6, 58.2, 49.1, 45.7, 29.5. IR (neat) v_{max} cm⁻¹ 1745

Hexahydro-1H-cyclopenta[4,5]pyrrolo[1,2-c]oxazol-3(4aH)-one (2l):

Compound 21-1, colorless oil, yield: 50 %, 42 mg, R_f =0.62(PE:EA=1:1). ¹H NMR (400 MHz, CDCl₃) δ 4.49-4.42 (m, 1H), 4.33 (td, *J* = 7.4, 3.7 Hz, 1H), 4.09 (dd, *J* = 8.9, 3.0 Hz, 1H), 3.958-3.91 (m, 1H), 2.83-2.75 (m, 1H), 1.98-1.93 (m, 1H), 1.90-1.81 (m, 2H), 1.68-1.57 (m, 3H), 1.57-1.46 (m, 1H), 1.38-1.30 (m, , 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 67.5, 63.8, 58.6, 44.1, 38.5, 34.4, 32.7, 26.4. IR (neat) v_{max} cm⁻¹ 1744; HRMS (ESI) calcd for C₉H₁₃NO₂ [M+H]⁺ 168.1019, found: 168.1018.

Compound 21-2, colorless oil, yield: 25 %, 21 mg, R_f =0.52(PE:EA=1:1). ¹H NMR (400 MHz, CDCl₃) δ 4.43-4.37 (m, 1H), 4.18-4.09 (m, 1H), 3.98 (t, *J* = 7.9 Hz, 1H), 3.91 (t, *J* = 7.2 Hz, 1H), 3.02-2.94 (m, 1H), 2.53 (dt, *J* = 7.1, 3.0 Hz, 1H), 2.21-2.15 (m, 1H), 1.68-1.53 (m, 5H), 1.23-1.14 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ 155.8, 68.3, 61.6, 60.6, 47.7, 38.0, 31.7, 28.3, 24.4. IR (neat) v_{max} cm⁻¹ 1744; HRMS (ESI) calcd for C₉H₁₃NO₂ [M+H]⁺ 168.1019, found: 168.1016.

Octahydrooxazolo[3,4-a]indol-3(1H)-one (2m):

Compound 2m-1, Coloreless oil, yield: 38 %, 34 mg, $R_f=0.52$ (PE:EA=1:1). ¹H NMR (600 MHz, CDCl₃) δ 4.58 (t, J = 8.6 Hz, 1H), 4.29-4.24 (m, 1H), 4.04 (dd, J = 8.6, 6.2 Hz, 1H), 3.85 (dt, J = 8.7, 5.9 Hz, 1H), 2.34 (dt, J = 13.9, 7.0 Hz, 1H), 2.04 -1.99(m, 1H), 1.81-1.75 (m, 1H), 1.71-1.68 (m, 2H), 1.63-1.57 (m, 2H), 1.54-1.50 (m, 1H), 1.43 (m, 2H), 1.35-1.31 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ 162.1, 70.3, 59.1, 56.7, 38.5, 35.5, 27.6, 26.3, 22.7, 21.1. IR (neat) v_{max} cm⁻¹ 1744; HRMS (ESI) calcd for C₁₀H₁₅NO₂ [M+H]⁺ 182.1176, found: 182.1177.

Compound 2m-2, Coloreless oil, yield: 26 %, 24 mg, R_f =0.45(PE:EA=1:1). ¹H NMR (600 MHz, CDCl₃) δ 4.49 (t, J = 8.3 Hz, 1H), 4.26-4.19 (m, 1H), 4.00 (t, J = 9.0 Hz, 1H), 3.57 (dt, J = 9.6, 6.3 Hz, 1H), 2.53 (dt, J = 11.3, 5.8 Hz, 1H), 2.48-2.42 (m, 1H), 1.86 (dt, J = 11.8, 5.9 Hz, 1H), 1.72-1.65 (m, 4H), 1.50-1.46 (m, 1H), 1.36-1.19 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 71.1, 59.7, 55.1, 41.5, 33.4, 27.4, 26.7, 23.1, 21.6. IR (neat) v_{max} cm⁻¹ 1742; HRMS (ESI) calcd for C₁₀H₁₅NO₂ [M+H]⁺ 182.1176,

found: 182.1178.

7a-Methyl-6,6-diphenyltetrahydropyrrolo[**1,2-c**]**oxazol-3(1H)-one** (**2n**): White solid, yield: 40%, 59 mg, R_f =0.39 (PE:EA=3:1), mp: 176-177 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.26 (m, 6H), 7.21-7.13 (m, 4H), 4.80 (dd, *J* = 12.7, 1.1 Hz, 1H), 3.98 (d, *J* = 8.5 Hz, 1H), 3.71 (d, *J* = 8.4 Hz, 1H), 3.57 (d, *J* = 12.7 Hz, 1H), 2.88 (dd, *J* = 13.7, 1.1 Hz, 1H), 2.66 (d, *J* = 13.7 Hz, 1H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 146.1, 144.3, 129.0, 128.8, 126.9, 126.8, 126.7, 76.0, 64.8, 58.6, 55.1, 49.9, 27.9. IR (neat) v_{max} cm⁻¹ 1746; HRMS (ESI) calcd for C₁₉H₁₉NO₂ [M+H]⁺ 294.1489, found: 294.1486.

6,6-Diphenyltetrahydro-1H-oxazolo[**3,4-a**]**pyridin-3(5H)-one:** White solid, yield: 24%, 35 mg, R_f=0.32 (PE:EA=3:1), mp:115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 4.3 Hz, 4H), 7.28-7.24 (m, 2H), 7.21-7.16 (m, 4H), 4.72 (dd, *J* = 13.9, 2.5 Hz, 1H), 4.45 (t, *J* = 7.7 Hz, 1H), 3.85-3.70 (m, 2H), 2.99 (d, *J* = 13.9 Hz, 1H), 2.73 (dq, *J* = 13.6, 2.9 Hz, 1H), 2.33 (td, *J* = 13.4, 3.0 Hz, 1H), 1.85 (dq, *J* = 13.0, 3.4 Hz, 1H), 1.25-1.21 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.6, 146.7, 143.5, 128.9, 128.7, 127.7, 126.8, 126.5, 126.4, 68.6, 54.2, 49.3, 45.9, 33.9, 26.8. IR (neat) v_{max} cm⁻¹ 1744; HRMS (ESI) calcd for C₁₉H₁₉NO₂ [M+H]⁺ 294.1489, found: 294.1487.

Mechanistic studies

25 mL Schlenk tube with 2,2-diphenylpent-4-en-1-amine (0.1 mmol) was evacuated and backfilled with CO₂. CD₃CN (1mL) was added under flow of CO₂ followed by addition of DBU (1 equiv.). The resulting solution was stirred for 1 h.

¹H NMR (400 MHz, Acetonitrile-*d*₃) δ 12.30 (s, 1H), 7.34-7.28 (m, 4H), 7.26-7.20 (m, 6H), 5.62-5.52 (m, 1H), 5.07-5.01 (m, 1H), 4.92 (dd, *J* = 10.2, 2.3 Hz, 1H), 4.49 (s, 1H), 3.85 (d, *J* = 5.9 Hz, 2H), 3.50-3.43 (m, 2H), 3.40 (t, *J* = 5.9 Hz, 2H), 3.22 (t, *J* = 5.7 Hz, 2H), 2.98 (d, *J* = 7.1 Hz, 2H), 2.77-2.69 (m, 2H), 1.95-1.86 (m, 2H), 1.76-1.68 (m, 2H), 1.68-1.57 (m, 4H). ¹³C NMR (101 MHz, Acetonitrile-*d*₃) δ 166.5, 162.7, 147.8, 136.1, 129.0, 128.8, 126.8, 118.1, 54.5, 51.2, 49.1, 48.9, 42.1, 38.9, 32.4, 29.7, 27.4, 24.9, 20.4.

Radical scavenger experiment

25 mL Schlenk tube with 2,2-diphenylpent-4-en-1-amine (0.5 mmol) was evacuated and backfilled with CO₂. CH₃CN 5mL was added under flow of CO₂, followed by addition of DBU (2 equiv.). The solution was stirred for 10 min with addition of TEMPO and I_2 (1 equiv.).

Extension of prolinol carbamates synthesis

Synthesis of 2a in gram scale

The 250 mL Schlenk tube with **1a** (5 mmol) was evacuated and backfilled with CO_2 for 3 times followed by addition of MeCN (50 mL). The DBU (5mmol) was injected via syringe and the resulting solution was stirred for 30 min. Then I₂ was added with stirring for 24 h at room temperature. The reaction was quenched with water, extracted with EtOAc and washed with saturated Na₂S₂O₃ and brine. Combined organic layer was dried by Na₂SO₄, evaporated and isolated by silica gel flash chromatography (petroleum ether/ EtOAc).

Synthesis of 3

The 25 mL Schlenk tube with **2a** (0.4 mmol) was evacuated and back-filled with N_2 followed by addition THF 4 mL. The allyl magnesium bromide (1 M in ether, 0.4 mmol) was injected via syringe at -78 °C. With stirring for 4 h, the reaction was warmed to room temperature and quenched with saturated NH₄Cl solution and was extracted with EtOAc (3×5 mL), dried by Na₂SO₄, evaporated and purified by silica gel flash chromatography (petroleum ether/ EtOAc).

1-(2-(hydroxymethyl)-4,4-diphenylpyrrolidin-1-yl)but-3-en-1-one (3)

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.25 (m, 4H), 7.19 (q, *J* = 7.3, 5.9 Hz, 6H), 5.93 (ddt, *J* = 16.9, 10.3, 6.6 Hz, 1H), 5.37-5.32 (m, 1H), 5.23-5.12 (m, 2H), 4.46-4.37 (m, 1H), 4.15-4.05 (m, 1H), 3.88 (d, *J* = 10.9 Hz, 1H), 3.76-3.69 (m, 1H), 3.62 (dd, *J* = 10.7, 7.4 Hz, 1H), 3.20 (d, *J* = 6.6 Hz, 2H), 2.86-2.78 (m, 1H), 2.21 (dd, *J* = 12.7, 10.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 145.0, 144.2, 130.6, 128.9, 128.8, 127.0, 127.0, 126.6, 126.4, 118.8, 66.9, 61.7, 58.2, 52.5, 40.6, 40.2.

Synthesis of 4

25 mL Schlenk tube containing LiAlH₄ (1.6 mmol) was evacuated and back-filled with N₂ followed by addition of THF 4 mL. **2a** (0.4 mmol) in THF (4 mL) was added to the suspension at 0 °C. Then the reaction was warmed to 30°C with stirring for 12 h. The mixture was cooled to 0 °C and quenched by 5M NaOH slowly. After extraction with EtOAc for 3 times, combined organic layer was washed with saturated NaCl solution and dried by Na₂SO₄, evaporated and generate pure product without further purification.

(1-methyl-4,4-diphenylpyrrolidin-2-yl)methanol (4)

¹H NMR (400 MHz, CDCl₃) δ 7.35-7.31 (m, 2H), 7.23 (q, *J* = 7.7, 7.2 Hz, 6H), 7.17-7.07 (m, 2H), 3.90 (d, *J* = 9.9 Hz, 1H), 3.57 (dd, *J* = 11.1, 3.7 Hz, 1H), 3.37 (dd, *J* = 11.0, 2.3 Hz, 1H), 2.99 (d, *J* = 9.9 Hz, 1H), 2.79 (dd, *J* = 12.4, 8.6 Hz, 1H), 2.68 (ddt, *J* = 8.7, 6.4, 3.0 Hz, 1H), 2.59 (dd, *J* = 12.4, 6.6 Hz, 2H), 2.38 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 148.7, 148.3, 128.5, 128.4, 127.2, 127.1, 126.1, 125.9, 68.3, 66.8, 61.6, 53.1, 41.8, 41.0.

Reference

- 1. M. R. Crimmin, M. Arrowsmith, A. G. M. Barrett, I. J. Casely, M. S. Hill and P. A. Procopiou, *J. Am. Chem. Soc.*, **2009**, *131*, 9670
- 2. Y. Wang, T. Li, G. Liu, L. Zhang, L. Duan, L. Li and Y. Li, RSC Adv., 2014, 4, 9517.
- 3. F. E. Michael and B. M. Cochran, J. Am. Chem. Soc., 2006, 128, 4246.
- 4. D. Riegert, J. Collin, A. Meddour, E. Schulz and A. Trifonov, *J. Org. Chem.*, **2006**, *71*, 2514.
- 5. M. Nambo, M. Yar, J. D. Smith, C. M. Crudden, Org. Lett. 2015, 17, 50.
- 6. S. Nicolai, R. Sedigh-Zadeh, J. Waser, J. Org. Chem. 2013, 78, 3783.
- 7. P. Mizar, A. Laverny, M. El-Sherbini, U. Farid, M. Brown, F. Malmedy and T. Wirth, *Chem. Eur. J.*, **2014**, *20*, 9910.
- 8. M. C. Wood, D. C. Leitch, C. S. Yeung, J. A. Kozak and L. L. Schafer, *Angew. Chem. Int. Ed.*, **2007**, *46*, 354.
- 9. W. Kong, P. Feige, T. de Haro, C. Nevado, Angew. Chem. Int. Ed. 2013, 52, 2469.

¹ H NMR, ¹³C NMR and ¹⁹F NMR Spectra

¹H NMR and ¹³C NMR for compound **2a**

¹H NMR and ¹³C NMR for compound **2b**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR for compound 2c

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR for compound $\mathbf{2d}$

 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR for compound 2e

¹H NMR and ¹³C NMR for compound **2f**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR for compound $\mathbf{2g}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR for compound 2h

¹H NMR and ¹³C NMR for compound **2i**

¹H NMR and ¹³C NMR for compound **2**j

The NOE spectrum of 2j with irradiation at δ 4.08

¹H NMR and ¹³C NMR for compound **2**k

¹H NMR and ¹³C NMR for compound **2l-1**

¹H NMR and ¹³C NMR for compound **21-2**

¹H NMR and ¹³C NMR for compound **2m-1**

¹H NMR and ¹³C NMR for compound **2m-2**

¹H NMR and ¹³C NMR for compound **2n**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR for compound $\mathbf{2p}$

¹H NMR and ¹³C NMR for compound **3**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR for compound 4

Crystal data and structure refinement for 2a.

Identification code	2a
Empirical formula	$C_{18}H_{17}NO_2$
Formula weight	279.33
Temperature/K	173.15
Crystal system	triclinic
Space group	P-1
a/Å	6.3952(13)
b/Å	9.4580(19)
c/Å	12.085(2)
α/°	102.98(3)
β/°	94.15(3)
γ/°	90.64(3)
Volume/Å ³	710.1(2)
Z	2
$\rho_{calc}g/cm^3$	1.306
µ/mm ⁻¹	0.085
F(000)	296
Crystal size/mm ³	$0.415 \times 0.332 \times 0.197$
Radiation	MoK α ($\lambda = 0.710747$)
Theta range for data collection/°	3.46 to 54.98
Index ranges	$-8 \le h \le 8, -12 \le k \le 12, -15 \le l \le 15$
Reflections collected	9148
Independent reflections	$3206 [R_{int} = 0.0267, R_{sigma} = 0.0214]$
Data/restraints/parameters	3206/0/190
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0410, wR_2 = 0.1055$
Final R indexes [all data]	$R_1 = 0.0427, wR_2 = 0.1070$

Largest diff. peak/hole / e Å⁻³ 0.29/-C14:D330.17

