Insights of biomass recalcitrance in *Populus trichocarpa* natural variants for biomass conversion

a. BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
b. UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
c. Renewable Bioproducts Institute, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
d. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.
e. HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
f. Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
g. Department of Chemical and Biomolecular Engineering & Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN 37996, USA.
*Email: puy1@ornl.gov; aragausk@utk.edu
Figure S1. Correlation between glucose release and xylose release of *P. trichocarpa* natural variants ($R^2=0.50$, Pearson coefficient=0.705, *p*-value=0.023)
Figure S2. Correlation between sugar release and cellulose crystallinity of *P. trichocarpa* (CrI vs glucose release: $R^2=0.06$, Pearson coefficient=0.078, p-value=0.831; CrI vs xylose release: $R^2=0.003$, Pearson coefficient=-0.001, p-value=0.998)
Figure S3. Correlation between lignin S/G ratio and \(\beta-O-4\) linkage content \((R^2=0.17,\) Pearson coefficient=0.411, \(p\)-value=0.238)

Figure S4. Correlation between lignin S/G ratio and \(\beta-5/\beta-\beta\) linkage content \((S/G\) ratio vs \(\beta-5\): \(R^2=0.40,\) Pearson coefficient=0.634, \(p\)-value=0.049; \(S/G\) ratio vs \(\beta-\beta\): \(R^2=0.11,\) Pearson coefficient=0.328, \(p\)-value=0.355)
Figure S5. Correlation between β-O-4 linkage content and sugar release (β-O-4 vs glucose release: $R^2=0.25$, Pearson coefficient=0.498, p-value=0.143; β-O-4 vs xylose release: $R^2=0.27$, Pearson coefficient=0.517, p-value=0.126)
Figure S6. Correlation between β-β linkage content and sugar release
(β-β vs glucose release: $R^2=0.002$, Pearson coefficient=-0.045, p-value=0.901; β-β vs xylose release: $R^2=0.0003$, Pearson coefficient=-0.017, p-value=0.963)
Figure S7. Correlation between maximum amount of orange dye adsorption and sugar release (Orange dye vs glucose release: $R^2=0.41$, Pearson coefficient=0.641, p-value=0.046; Orange dye vs xylose release: $R^2=0.24$, Pearson coefficient=0.493, p-value=0.148)

Figure S8. Correlation between maximum amount of blue dye adsorption and sugar release (Blue dye vs glucose release: $R^2=0.56$, Pearson coefficient=0.747, p-value=0.013; Blue dye dye vs xylose release: $R^2=0.16$, Pearson coefficient=0.397, p-value=0.256)
Figure S9. Correlation between cellulose accessibility and lignin S/G ratio

Figure S10. Correlation between cellulose accessibility and cellulose DP w
Figure S11. Correlation between cellulose accessibility and cellulose crystallinity index
Figure S12. Differentially expressed genes between *P. trichocarpa* natural variant genotypes
Table S1. The list of correlation efficient between physicochemical property analysis and differentially expressed genes over natural variant.