Supporting Information

Base-free Nickel-catalyzed Hydroboration of Simple Alkene with Bis(pinacolato)diboron in Alcoholic Solvent

Jiang-Fei Li,†‡ Zhen-Zhong Wei,† Yong-Qiu Wang,*† and Mengchun Ye*‡

†Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
‡State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Table of Contents

1. General Information .. S2
2. General Procedure for Nickel-catalyzed Hydroboration .. S2
3. Mechanistic Study ... S8
4. NMR Spectra .. S11
1. General Information
Unless mentioned otherwise, all manipulations were performed in an argon-filled glove box MBRAUN LAB star or using standard Schlenk techniques. NMR spectra were recorded on a Bruker AV 400 spectrometer at 400 MHz (1H NMR), 100 MHz (13C NMR). Chemical shifts were reported in ppm relative to internal TMS for 1H NMR data, deuterated solvent for 13C NMR data, respectively. Data are presented in the following space: chemical shift, multiplicity, coupling constant in hertz (Hz), and signal area integration in natural numbers. Melting points were measured on a RY-I apparatus and uncorrected. Optical rotations were determined using a Perkin Elmer 341 polarimeter. High-resolution mass spectra were recorded on an IonSpec FT-ICR mass spectrometer with ESI resource. All the solvents used for reactions were distilled under argon after drying over an appropriate drying agent.

2. General Procedure for Nickel-Catalyzed Hydroboration
2.1 Arylalkene Hydroboration

\[
\text{Ar}^+ + \text{B}_2\text{pin}_2 \xrightarrow{\text{Ni(cod)}_2, (2 \text{ mol})} \text{MeOH, 75°C} \xrightarrow{\text{Bu}_3\text{P} (4 \text{ mol})} \text{Ar}^+ \text{Bpin}
\]

In an argon-filled glove-box, an oven-dried sealed tube was charged with a stir bar, Ni(cod)$_2$ (5.5 mg, 0.02 mmol), 3Bu$_3$P (10% in toluene, 81 mg, 0.04 mmol), and bis(pinacolato) diboron (1.1 mmol). Arylalkene 1 (1.0 mmol) and MeOH (2 mL) was injected into the tube. The tube was then sealed and removed out from the glove-box. The reaction mixture was heated at 75°C for 10 h, then cooled to room temperature and concentrated in vacuo. The crude product was purified by flash column chromatography using ethyl acetate/hexane as eluent.

4,4,5,5-Tetramethyl-2-phenethyl-1,3,2-dioxaborolane (2a)1
Yield: 91%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.28 – 7.20 (m, 4H), 7.17 – 7.13 (m, 1H), 2.75 (t, $J = 8.0$ Hz, 2H), 1.22 (s, 12H), 1.14 (t, $J = 8.0$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 144.4, 128.2, 128.0, 29.9, 24.8.

2-(4-(Benzyloxy)phenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2b)
Yield: 91%. White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, $J = 8.0$ Hz, 2H), 7.37 (t, $J = 8.0$ Hz, 2H), 7.31 (t, $J = 8.0$ Hz, 1H), 7.13 (d, $J = 8.0$ Hz, 2H), 6.88 (d, $J = 8.0$ Hz, 2H), 5.03 (s, 2H), 2.69 (t, $J = 8.0$ Hz, 2H), 1.21 (s, 12H), 1.11 (t, $J = 8.0$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 156.8, 137.3, 136.8, 128.9, 128.5, 127.8, 127.4, 114.6, 83.0, 29.0, 24.8. HRMS (ESI): $m/z [M+H]^+$ calculated for C$_{21}$H$_{28}$BO$_3$: 339.2126; found: 339.2132.
2-(4-Methoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2c)
Yield: 93%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.13 (d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.0 Hz, 2H), 3.77 (s, 3H), 2.69 (t, J = 8.0 Hz, 2H), 1.22 (s, 12H), 1.11 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 157.5, 136.5, 128.8, 113.5, 83.0, 55.2, 29.0, 24.8.

2-(2-(2-Methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)
Yield: 79%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.20 – 7.10 (m, 2H), 6.89 – 6.79 (m, 2H), 3.79 (s, 3H), 2.73 (t, J = 8.0 Hz, 2H), 1.22 (s, 12H), 1.12 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 157.3, 132.6, 129.0, 126.6, 120.1, 109.90, 82.86, 55.0, 24.7, 24.3.

2-(3-Methoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)
Yield: 76%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.17 (t, J = 8.0 Hz, 1H), 6.81(d, J = 8.0 Hz, 1H), 6.78(d, J = 2.4 Hz, 1H), 6.70 (dd, J = 8.0, 2.4 Hz, 1H), 3.78 (s, 3H), 2.72 (t, J = 8.0 Hz, 2H), 1.23 (s, 12H), 1.14 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 159.5, 146.1, 129.1, 120.4, 113.6, 110.9, 83.1, 55.1, 30.0, 24.8.

4,4,5,5-Tetramethyl-2-(4-methylphenethyl)-1,3,2-dioxaborolane (2f)
Yield: 94%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.08 (q, J = 8.0 Hz, 4H), 2.70 (t, J = 8.0 Hz, 2H), 2.30 (s, 3H), 1.23 (s, 12H), 1.12 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 141.4, 134.8, 128.8, 127.8, 83.0, 29.5, 24.8, 21.0.

2-(4-(tert-Butyl)phenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2g)
Yield: 80%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.28 (d, J = 8.0 Hz, 2H), 7.15(d, J = 8.0 Hz, 2H), 2.71 (t, J = 8.0 Hz, 2H), 1.31 (s, 9H), 1.23 (s, 12H), 1.15 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 148.2, 141.3, 127.6, 125.0, 83.0, 34.3, 31.4, 29.3, 24.8.
2-(2-([1,1'-Biphenyl]-4-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2h)5

Yield: 86%. White solid. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.59 – 7.57\) (m, 2H), 7.50 (d, \(J = 8.0\) Hz, 2H), 7.42 (t, \(J = 8.0\) Hz, 2H), 7.28 – 7.34 (m, 3H), 2.79 (t, \(J = 8.0\) Hz, 2H), 1.23 (s, 12H), 1.18 (t, \(J = 8.0\) Hz, 2H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta 143.6, 141.2, 138.5, 128.7, 128.4, 127.0, 126.9, 83.1, 29.6, 24.8\).

2-(4-Fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2i)1

Yield: 86%. Colourless oil. \(1H\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.18 – 7.14\) (m, 2H), 6.95-6.91 (m, 2H), 2.71 (t, \(J = 8.0\) Hz, 2H), 1.21 (s, 12H), 1.12 (t, \(J = 8.0\) Hz, 2H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta 161.0\) (d, \(J = 239\) Hz), 139.9 (d, \(J = 3.0\) Hz), 129.3 (d, \(J = 7.6\) Hz), 114.8 (d, \(J = 20.8\) Hz), 83.1, 29.1, 24.8.

2-(3-Fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2j)4

Yield: 87%. Colourless oil. \(1H\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.23 – 7.18\) (m, 1H), 6.98 (d, \(J = 8.0\) Hz, 1H), 6.94 – 6.91 (m, 1H), 6.86 – 6.82 (m, 1H), 2.74 (t, \(J = 8.0\) Hz, 2H), 1.22 (s, 12H), 1.13 (t, \(J = 8.0\) Hz, 2H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta 162.8\) (d, \(J = 237\) Hz), 147.0 (d, \(J = 7.1\) Hz), 129.5 (d, \(J = 8.3\) Hz), 123.6 (d, \(J = 2.6\) Hz), 114.8 (d, \(J = 20.6\) Hz), 112.3 (d, \(J = 20.9\) Hz), 83.2, 29.7, 24.8.

4,4,5,5-Tetramethyl-2-(4-trifluoromethyl)phenethyl)-1,3,2-dioxaborolane (2k)4

Yield: 49%. Colourless oil. \(1H\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.51\) (d, \(J = 8.0\) Hz, 2H), 7.32 (d, \(J = 8.0\) Hz, 2H), 2.80 (t, \(J = 8.0\) Hz, 2H), 1.22 (s, 12H), 1.15 (t, \(J = 8.0\) Hz, 2H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta 148.5, 128.3, 127.6\) (q, \(J = 30.0\) Hz), 124.0 (q, \(J = 271\) Hz), 83.2, 29.8, 24.8.

2-(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2l)
Yield: 91%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 6.78 – 6.62 (m, 3H), 5.89 (s, 2H), 2.66 (t, J = 8.0 Hz, 2H), 1.22 (s, 12H), 1.09 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 147.3, 145.3, 138.3, 120.5, 108.6, 107.9, 100.6, 83.1, 29.7, 24.8. HRMS (ESI): m/z [M+H]$^+$ calculated for C$_{15}$H$_{22}$BO$_4$: 277.1606; found: 277.1611.

2-(2,5-Dimethylphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2m)

Yield: 89%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.01 (d, J = 8.0 Hz, 2H), 6.94 – 6.87 (m, 1H), 2.69 (t, J = 8.0 Hz, 2H), 2.29 (s, 3H), 2.28 (s, 3H), 1.25 (s, 12H), 1.10 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 142.3, 135.1, 132.5, 129.8, 129.0, 126.2, 83.0, 27.2, 24.8, 21.0, 18.7.

4,4,5,5-Tetramethyl-2-(2,4,6-trimethylphenethyl)-1,3,2-dioxaborolane (2n)

Yield: 67%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.01 (d, J = 8.0 Hz, 2H), 6.94 – 6.87 (m, 1H), 2.69 (t, J = 8.0 Hz, 2H), 2.29 (s, 3H), 2.28 (s, 3H), 1.25 (s, 12H), 1.10 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 142.3, 135.1, 132.5, 129.8, 129.0, 126.2, 83.0, 27.2, 24.8, 21.0, 18.7.

2-(3,4,5-Trimethoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2o)

Yield: 84%. White solid. 1H NMR (400 MHz, CDCl$_3$) δ 6.44 (s, 2H), 3.83 (s, 6H), 3.80 (s, 3H), 2.69 (t, J = 8.0 Hz, 2H), 1.22 (s, 12H), 1.13 (t, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 152.9, 140.2, 135.7, 104.7, 83.1, 60.8, 55.9, 30.3, 24.8.

4,4,5,5-Tetramethyl-2-(2-phenylpropyl)-1,3,2-dioxaborolane (2p)

Yield: 93%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.26 – 7.24 (m, 4H), 7.16 – 7.14 (m, 1H), 3.06 – 3.00 (m, 1H), 1.27 (d, J = 4.0 Hz, 3H), 1.16 (m, 14H). 13C NMR (100 MHz, CDCl$_3$) δ 149.2, 128.1, 126.6, 125.6, 82.9, 35.8, 24.9, 24.7, 24.6.
2-(2,2-Diphenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2q)
Yield: 83%. White solid. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.30 – 7.21 (m, 8H), 7.15-7.11 (m, 2H), 4.28 (t, \(J = 8.0\) Hz, 1H), 1.60 (d, \(J = 8.0\) Hz, 2H), 1.05 (s, 12H). \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 146.5, 128.2, 127.6, 125.9, 83.1, 46.5, 24.5.

4,4,5,5-Tetramethyl-2-(1-phenylpropan-2-yl)-1,3,2-dioxaborolane (2r)
Yield: 85%. Colourless oil. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.28 – 7.11 (m, 5H), 2.80 (dd, \(J = 8.0, 13.6\) Hz, 1H), 2.54 (dd, \(J = 8.0, 13.6\) Hz, 1H), 1.42 – 1.33 (m, 1H), 1.18 (s, 6H), 1.17 (s, 6H), 0.97 (d, \(J = 8.0\) Hz, 3H). \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 142.3, 128.9, 128.0, 125.6, 83.0, 39.0, 24.7, 15.3.

2-(1,2-Diphenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2s)
Yield: 65%. Colourless oil. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.29 – 7.08 (m, 10H), 3.15 (dd, \(J = 13.6, 10\) Hz, 1H), 2.96 (dd, \(J = 13.6, 6.8\) Hz, 1H), 2.68 (dd, \(J = 10, 7.2\) Hz, 1H), 1.09 (s, 6H), 1.08 (s, 6H). \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 142.5, 141.6, 128.8, 128.30, 128.25, 128.0, 125.7, 125.3, 83.3, 38.8, 24.5, 24.4.

2-(Ferrocenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2t)
Yield: 92%. Orange oil. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.09 (s, 5H), 4.08 – 3.99 (m, 4H), 2.43 (t, \(J = 8.0\) Hz, 2H), 1.25 (s, 3H), 1.06 (t, \(J = 8.0\) Hz, 2H). \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 91.5, 82.9, 68.3, 67.6, 66.8, 24.7, 23.5. HRMS (ESI): \(m/z\) [M+H]\(^{+}\) calculated for C\(_{18}\)H\(_{26}\)BFeO\(_2\): 341.1370; found: 341.1368.

2.2 Alkylalkene Hydroboration

\[\text{R} = \begin{array}{c} \text{B} \end{array} \text{Pin} \]

In an argon-filled glove-box, an oven-dried sealed tube was charged with a stir bar, Ni(cod)\(_2\) (5.5 mg, 0.02 mmol), \text{Bu}_{3}P (10% in toluene, 81 mg, 0.04 mmol), and bis(pinacolato)diboron (1.1 mmol). Alkylalkene \(\text{3} (1.0 \text{ mmol})\) and MeOH (2 mL) was injected into the tube. The tube was then sealed and removed out from the glove-box. The reaction mixture was heated at 75\(^\circ\)C for 10 h, then cooled to room temperature and concentrated in vacuo. The crude product was purified by flash column chromatography using ethyl acetate/hexane as eluent.
2-Hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4a)⁸ and 2-(hexan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4a′)⁸. Combined yield of two isomers (1:1): 85%. Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.40 (s, 3H), 1.35 – 1.19 (m, 24H), 1.03 – 0.93 (m, 3H), 0.92 – 0.82 (m, 5H), 0.77 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 82.8, 82.7, 32.9, 32.1, 31.6, 31.2, 23.9, 22.9, 22.6, 15.5, 14.09, 14.05.

2-(3,3-Dimethylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane⁹
Yield: 81%. Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.31 – 1.26 (m, 2H), 1.24 (s, 12H), 0.84 (s, 9H), 0.71 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 82.8, 37.7, 30.8, 28.8, 24.8.

2-(2,3-Dimethylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane⁹
Yield: 43%. Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.64 – 1.57 (m, 1H), 1.51 – 1.39 (m, 1H), 1.24 (s, 12H), 0.85 – 0.80 (m, 10H), 0.62 – 0.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 82.8, 35.1, 34.2, 24.9, 24.7, 19.7, 18.6, 18.5.

4,4,5,5-Tetramethyl-2-(octan-4-yl)-1,3,2-dioxaborolane¹⁰
Yield: 58%. Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.39 – 1.33 (m, 10H), 1.23 (s, 12H), 0.98 – 0.93 (m, 1H) 0.87 – 0.90 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 82.7, 27.9, 27.1, 26.7, 24.7.

2-Cyclohexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane¹¹
Yield: 78%. Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.66 – 1.59 (m, 5H), 1.34 – 1.25 (m, 5H), 1.23 (s, 12H), 1.01 – 0.92 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 82.7, 27.9, 27.1, 26.7, 24.7.
exo-2-(Bicyclo[2.2.1]heptan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Yield: 66%. Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 2.28 – 2.24 (m, 1H), 2.23 – 2.17 (m, 1H), 1.52 – 1.43 (m, 3H), 1.35 – 1.30 (m, 1H), 1.23 – 1.21 (m, 14H), 1.18 – 1.13 (m, 2H), 0.88 – 0.84 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 82.7, 38.7, 38.1, 36.6, 32.2, 32.1, 29.2, 24.7.

3. Mechanistic Study

In an argon-filled glove-box, an oven-dried sealed tube was charged with a stir bar, Ni(cod)$_2$ (2.8 mg, 0.01 mmol), tBu$_3$P (10% in toluene, 40.5 mg, 0.02 mmol), and bis(pinacolato)diboron (0.55 mmol), p-methylstyrene (0.5 mmol) and MeOD (1 mL) was injected into the tube. The tube was then sealed and removed out from the glove-box. The reaction mixture was heated at 75°C for 10 h, then cooled to room temperature and concentrated in vacuo. The crude product was purified by flash column chromatography using ethyl acetate/hexane as eluent.
In an argon-filled glove-box, an oven-dried sealed tube was charged with a stir bar, Ni(cod)$_2$ (2.8 mg, 0.01 mmol), t-Bu$_3$P (10% in toluene, 40.5 mg, 0.02 mmol), and bis(pinacolato)diboron (0.55 mmol). p-methylstyrene (0.5 mmol) and CD$_3$OD (1 mL) was injected into the tube. The tube was then sealed and removed out from the glove-box. The reaction mixture was heated at 75°C for 10 h, then cooled to room temperature and concentrated in vacuo. The crude product was purified by flash column chromatography using ethyl acetate/hexane as eluent.
References

4. NMR Spectra