Water excellent solvent for the synthesis of bifunctionalized

cyclopentenones

M. Nardi,^{*a,b} P. Costanzo,^c A. De Nino,^a M. L. Di Gioia,^d F. Olivito,^c G. Sindona^a and A. Procopio^c

^{*a*} Dipartimento di Chimica, Università della Calabria, Cubo 12C, 87036-Arcavacata di Rende (CS), Italy, Tel.: +39 0984 492850. Fax: +39 0984493307. E-mail: <u>monica.nardi@unical.it</u>

^b Dipartimento di Agraria, Università Telematica San Raffaele, Roma, Via di Val Cannuta, 247, 00166, Italia.

^c Dipartimento di Scienze della Salute, Università Magna Graecia, Viale Europa, 88100-Germaneto (CZ), Italia.

^{*d*} Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Edificio Polifunzionale, Università della Calabria, 87030 Arcavacata di Rende, Cosenza.

INDICE	Pag.
Experimental Section	3
General MW-assisted protocol for synthesis of <i>trans</i> - 4,5 diaminocyclopent-2- enones (1a-10a).	3
Spectroscopic data (1a-10a).	3
General protocol for the synthesis of 2,4 diaminocyclopent-2-enones (1b-3b) and (1c-1j).	4
Spectroscopic data (1b-3b) and (1c-1j).	4
¹ H NMR spectrum (1b)	6
¹³ C NMR spectrum (1b)	7
¹ H NMR spectrum (1j)	8
¹³ C NMR spectrum (1j)	9
HRMS (ESI) spectrum (3a, 4a, 6a)	10
HRMS (ESI) spectrum (1c, 1e, 1f, 1g, 1j)	11

Experimental section

All chemicals and solvents were purchased from common commercial sources and were used as received without any further purification. All reactions were monitored by TLC on silica Merck 60 F_{254} pre-coated aluminum plates Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Brüker spectrometer at 300 MHz. Chemical shifts are reported in δ units (ppm) with TMS as reference (δ 0.00). All coupling constants (J) are reported in Hertz. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Carbon nuclear magnetic resonance (¹G NMR) spectra were recorded on a Brüker at 75 MHz. Chemical shifts are reported in δ units (ppm) relative to CDCl₃ (δ 77.0). MW-assisted reactions were performed on a Synthos 3000 instrument from Anton Paar, equipped with a 4×24MG5 Rotor and an IR probe used for external temperature control.

LC-MS analysis were carried using an Agilent 6540 UHD Accurate Mass Q-TOF LC–MS (Agilent, Santa Clara, CA) fitted with a electrospray ionisation source (Dual AJS ESI) operating in positive ion mode. Chromatographic separation was achieved using a C18 RP analytical column (Poroshell 120, SB-C18, 50 × 2.1 mm, 2.7 μ m) at 30°C with a elution gradient from 5% to 95% of B over 13 min, A being H₂O (0.1% FA) and B CH₃CN (0.1% FA). Flow rate was 0.4 ml/min.

General MW-assisted protocol for synthesis of *trans*- 4,5 diaminocyclopent-2-enones (1a-10a).

To a water solution (3 mL) of furfural (1 mmol) in a 3 mL glass vial, the amine (2.2 mmol) was added. The mixture was reacted for 5 min in a Synthos 3000 microwave instrument, fixed on the temperature value of 60 °C (IR Limit). The reaction was monitored by TLC and GC/MS analysis. Diethyl ether was added after the completion of reaction and the products were isolated after evaporation of the solvent to yield compounds **1a-10a** in 80-93 % yields.

trans-4,5-dimorpholinocyclopent-2-en-1-one (1a): Spectral data were in accordance with the literature.^{9a}

trans-4,5-bis(phenylamino)cyclopent-2-en-1-one (2a): Spectral data were in accordance with the literature. ^{9a}

3

trans-4,5-bis(methyl(phenyl)amino)cyclopent-2-en-1-one (3a): Spectral data were in accordance with the literature. ^{9a} HRMS (ESI) for $([C_{19}H_{20}N_2O] + H)^+$ 293.1654, found 293.1644 [M+H]⁺.

trans-4,5-di(pyrrolidin-1-yl)cyclopent-2-en-1-one (4a): Spectral data were in accordance with the literature.^{8f} HRMS (ESI) for ($[C_{13}H_{20}N_2O] + H$)⁺ 221.1654, found 221.1649 [M+H]⁺, 243.1452 [M+Na]⁺.

trans-4,5-di(piperidin-1-yl)cyclopent-2-en-1-one (5a): Spectral data were in accordance with the literature. ^{9a}

trans-4,5-bis(dibenzylamino)cyclopent-2-en-1-one (6a): Spectral data were in accordance with the literature. ^{9a} HRMS (ESI) for ($[C_{33}H_{32}N_2O] + H$)⁺ 473.2593, found 473.2583, $[M+H]^+$, 495.2543, $[M+Na]^+$.

trans-4,5-di(isoindolin-2-yl)cyclopent-2-en-1-one (7a): Spectral data were in accordance with the literature. ^{9a}

trans-4,5-bis(3,4-dihydroquinolin-1(2H)-yl)cyclopent-2-en-1-one (8a): Spectral data were in accordance with the literature.^{9a}

trans-4,5-bis(diisobutylamino)cyclopent-2-enone (9a): Spectral data were in accordance with the literature.¹¹

trans-4,5-bis(diallylamino)cyclopent-2-enone (10a): Spectral data were in accordance with the literature.^{9a}

General protocol for the synthesis of 2,4 diaminocyclopent-2-enones (1b-3b) and (1c-1j).

To a water solution (3 mL) of furfural (1 mmol) in a 3 mL glass vial, the amine (2.2 mmol) was added. The mixture was reacted for 5 min in a Synthos 3000 microwave instrument, fixed on the temperature value of 60 °C (IR Limit).

In order to obtain the 2,4 bisubstituted cyclopentenones **1b-3b** the reaction mixture, after MW irradiation, was kept at room temperature for further 4 hour. After completion, diethyl ether was added (3×2 mL) and the organic phase was dried over Na₂SO₄ and filtered. The products were isolated after evaporation of the diethyl ether to afford compounds **1b-3b** in 85-91 % yields.

Instead, for the synthesis of compounds **1c-1j**, after MW irradiation, the addition of various nucleophiles (1 mmol) was necessary. Also in this case the mixture was maintained at room temperature for further 4 hours. The reaction was monitored by TLC and GC/MS analysis. After completion, water was removed under reduced pressure and the resulting crude product was purified by flash chromatography (CH₂Cl₂/MeOH 9.5:0.5). The products **1c-1j** were obtained in 79-89 % yields.

2,4-dimorpholinocyclopent-2-enone (1b): ¹H NMR (300 MHz, CDCl₃) 6.24 (d, *J* = 2.9 Hz, 1H, COC=*CH*), 3.78 (t, *J* = 4.7 Hz, 4H, morpholine), 3.73 (t, *J* = 4.7 Hz, 4H, morpholine), 3.73-3.72 (m, 1H, COCH₂CHN), 3.15-3.14 (m, 4H, morpholine), 2.54-2.52 (m, 4H, morpholine), 2.49-2.48 (m, 1H, COCH₂), 2.46-2.45 (m, 1H, COCH₂); ¹³C NMR (75 MHz, CDCl₃) 38.1, 48.1, 50.0, 60.3, 66.6, 67.1, 129.5, 151.7, 202.0.

2,4-bis(phenylamino)cyclopent-2-enone (2b): Spectral data were in accordance with the literature.^{10a}

2,4-bis(methyl(phenyl)amino)cyclopent-2-enone (3b): Spectral data were in accordance with the literature.^{10a}

4-(ethylthio)-2-morpholinocyclopent-2-enone (1c): Spectral data were in accordance with the literature. ^{10a} HRMS (ESI) for $([C_{11}H_{17}NO_2S] + H)^+$ 228.1058, found 228.1048 [M+H]⁺.

4-(cyclohexylthio)-2-morpholinocyclopent-2-enone (1e): Spectral data were in accordance with the literature. ^{10a} HRMS (ESI) for ($[C_{15}H_{23}NO_2S] + H$)⁺ 282.1528, found 282.1523 [M+H]⁺.

4-(phenylthio)-2-morpholinocyclopent-2-enone (1f): Spectral data were in accordance with the literature. ^{10a} HRMS (ESI) for $([C_{15}H_{17}NO_2S] + H)^+$ 276.1058, found 276.1050 [M+H]⁺.

4-(benzylthio)-2-morpholinocyclopent-2-enone (1g): Spectral data were in accordance with the literature.^{10a} HRMS (ESI) for ($[C_{16}H_{19}NO_2S] + H$)⁺ 290.1215, found 290.1212[M+H]⁺.

4- (methyl-L-cysteinate)-2-morpholino cyclopent-2-enone (1j): ¹H NMR (300 MHz, CDCl₃) 6.23 (d, *J* = 3.0 Hz, 1H, COC=C*H*), 4.02 (dt, *J* = 9.3 Hz, *J* = 5.5 Hz, 1H, COC*H*NH₂), 3.75-3.64 (m, 4H, morpholine), 3.45-3.41 (m, 1H, SC*H*), 3.03 (s, 3H, CH₃), 2.79 (t, 2H, *J* = 9.3 Hz, COC*H*₂), 2.61-2.53 (m, 4H, morpholine), 2.49-2.46 (m, 1H, SC*H*₂), 2.45-2.39 (m, 1H, SC*H*₂); ¹³C NMR (75 MHz, CDCl₃) 37.9, 43.9, 44.2, 48.0, 49.0, 49.9, 66.9, 110.0, 152.9, 174.8, 201.8. HRMS (ESI) for ([C₁₃H₂₀N₂O₄S] + H)⁺ 301.1222, found 301.1214 [M+H]⁺.

									الماريمية). الماريمية	20
								-	Advantal Lines	30
		86.78 89.78	_						dir il colletti	40
		68.64 00.64 12.44								50
									William Strategy	09
		96*99							and a start of the	2
									A PRINTING	80
									and the first of the second	6
									in the second second	100
		LUTOTT							and a state of the second	110
									and had been bles	120
									hadden for generation	130
									and the fight of the second	140
		68°ZST	_						A STATE AND A S	150
									And a shirt of the second s	160
									a la factoria da la construction de la construcción de la construcción de la construcción de la construcción de	170
		98.PT							halaharan generi	180
								0 NPh	a se superior de la contra de la La contra de la contra	190
mpound 3a		18,102						NPh		200
mpound Table								, 		Ē
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)	MFG Formula	DB Formula		
Cpa 1: C19 H20 N2 O	5,959	292,15/4	101081	C19 H20 N2 O	292,1576	-0,64	C19 H20 N2 O	C19 H20 N2 O		

HRMS (ESI)

Compound 3a

Compound Table

m/z	z	Abund	Formula	Ion
293,1644	1	101081,47	C19H20N2O	(M+H)+
294,1696	1	20728,57	C19H20N2O	(M+H)+
295,1686	1	4045,16	C19H20N2O	(M+H)+

Compound 4a

Compound Table

						Diff		
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Cpd 1: C13 H20 N2 O	1,928	220,1576	699293	C13 H20 N2 O	220,1576	0,14	C13 H20 N2 O	C13 H20 N2 O

MS Spectrum Peak List

m/z	z	Abund	Formula	Ion
221,1649	1	699293,06	C13H20N2O	(M+H)+
222,1679	1	92918,73	C13H20N2O	(M+H)+
223,1702	1	7771,66	C13H20N2O	(M+H)+
224,1697	1	658,89	C13H20N2O	(M+H)+
243,1452	1	1133,93	C13H20N2O	(M+Na)+
244,1474	1	230,81	C13H20N2O	(M+Na)+

Compound 6a

	Compound Table								
ſ							Diff		
	Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
I	Cpd 1: C33 H32 N2 O	8,975	472,2554	20559	C33 H32 N2 O	472,2515	8,29	C33 H32 N2 O	C33 H32 N2 O

NBng	2
NBn ₂	

m/z	z	Abund	Formula	Ion
473,2583	1	20558,72	C33H32N2O	(M+H)+
474,263	1	7872,94	C33H32N2O	(M+H)+
495,2543	1	9128,57	C33H32N2O	(M+Na)+
496,2627	1	1655,41	C33H32N2O	(M+Na)+

Compound 1c

Compound Table

						Diff		
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Cpd 1: C11 H17NO2S	3,969	227,0978	669183	C11 H17NO2S	227,098	-1,21	C11 H17NO2S	C11 H17NO2S

Compound Label	m/z	RT	Algorithm	Mass
Cpd 1: C11 H17NO2S	228,1048	4,938	Find By Formula	227,0978

MS Spectrum Peak List

m/z	z	Abund	Formula	Ion
228,1048	1	669183,06	C15 H23NO2S	(M+H)+
229,1148	1	90819,63	C15 H23NO2S	(M+H)+
230,109	1	7817,65	C15 H23NO2S	(M+H)+
231,11	1	684,93	C15 H23NO2S	(M+H)+

Compound 1e

Compound Table

						Diff		
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Cpd 1: C15 H23NO2S	4,938	281,1449	10020	C15 H23NO2S	281,1449	-1,04	C15 H23NO2S	C15 H23NO2S

Compound Label	m/z	RT	Algorithm	Mass
Cpd 1: C15 H23NO2S	282,1523	4,938	Find By Formula	281,1449

m/z	z	Abund	Formula	Ion
282,1523	1	10020,61	C15 H23NO2S	(M+H)+
283,1553	1	1584,74	C15 H23NO2S	(M+H)+
284,1576	1	843,94	C15 H23NO2S	(M+H)+
285,1697	1	149,4	C15 H23NO2S	(M+H)+

Compound 1f

Compound Table

						Diff		
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Cpd 1: C15 H17NO2S	6,558	275,0977	99110	C15 H17NO2S	275,098	1,04	C15 H17NO2S	C15 H17NO2S

m/z	RT	Algorithm	Mass
276,105	6,558	Find By Formula	275,0977
	<i>m/z</i> 276,105	<i>m/z</i> RT 276,105 6,558	m/zRTAlgorithm276,1056,558Find By Formula

MS Spectrum Peak List

m/z	z	Abund	Formula	Ion
276,105	1	99110,05	C15 H17NO2S	(M+H)+
277,112	1	18004,74	C15 H17NO2S	(M+H)+
278,104	1	7043,45	C15 H17NO2S	(M+H)+
279,09	1	1049,4	C15 H17NO2S	(M+H)+

Compound 1g

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)	MFG Formula	DB Formula
Cpd 1: C16H19NO2S	6,706	289,1131	98910	C16H19NO2S	289,1136	1,35	C16H19NO2S	C16H19NO2S

Compound Label	m/z	RT	Algorithm	Mass
Cpd 1:C16H19NO2S	290,1212	6,706	Find By Formula	289,1131

Q

-S -S

m/z	z	Abund	Formula	Ion
290,1212	1	98910,05	C16H19NO2S	(M+H)+
291,1218	1	17825,25	C16H19NO2S	(M+H)+
292,1209	1	6943,81	C16H19NO2S	(M+H)+
293,1183	1	988,98	C16H19NO2S	(M+H)+

Compound 1j

 H_2N MeO

Compound Table							MeO ² No	
Compound Label	RT	Mass	Abund	Formula	Tot Mass	Diff (ppm)	MFG Formula	DB Formula
Cpd 1: C13 H20 N2 O4 S	2,403	300,1141	10311	C13 H20 N2 O4 S	300,1144	-1,04	C13 H20 N2 O4 S	C13 H20 N2 O4 S

MS Spectrum Peak List

m/z	z	Abund	Formula	Ion
301,1214	1	10310,61	C13H20N2O4S	(M+H)+
302,1242	1	1674,74	C13H20N2O4S	(M+H)+
303,1194	1	733,96	C13H20N2O4S	(M+H)+
304,1182	1	149,4	C13H20N2O4S	(M+H)+