Supporting information

Conversion of HMF to Methyl Cyclopentenolone by the Pd/Nb₂O₅ and Ca-Al Catalysts via Two-steps Procedure

Ying Duan,^{a,b} Min Zheng,^a Dongmi Li,^a Dongsheng Deng,^a Lu-Fang Ma^a and Yanliang Yang^{*a}

^a Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China. Email: yangyl0410@126.com

^b College of Food and Drug, Luoyang Normal University, Luoyang 471934, P. R. China

Fig. S1 FT-IR spectrum of Nb_2O_5 and Nb_2O_5 -x.

Fig. S2 The XRD patterns of Pd catalysts with different Pd contents.

Fig. S3 The CO pulse chemisorption profiles of Pd/Nb₂O₅-400.

Entry	Catalysts	B.E. (eV)			
		Pd 3d _{5/2}		Pd 3d _{3/2}	
1	Pd-Nb ₂ O ₅ -400	334.7	336.7	339.9	341.8
2	Pd-Nb ₂ O ₅ -400-IP	334.8	336.4	340.1	341.9
3	Pd-Nb ₂ O ₅ -400-B	335.3	336.9	340.7	342.5

 Table S1 The binding energy for different Pd catalylsts.

Table S2 Pd contents in the different catalysts.

Entry	Catalysts	Pd contents $(wt.\%)^a$
1	Pd-Nb ₂ O ₅ -400	0.61
2	Pd-Nb ₂ O ₅ -400-IP	0.63
3	Pd-Nb ₂ O ₅ -400-B	0.70

^{*a*} Determined by ICP-AES.

Entry ($C_{ontrol} / 0 /$	HHD	NoOH /mol L-l	МСР
	COIIV. / 70	Select. /% ^b	NaOH /III0I L	Isolated yield /% ^c
1	93	67	0.01	28
2	94	69	0.04	43
3	90	63	0.06	41
4	90	71	0.08	47
5	94	66	0.10	52
6	91	70	0.15	57
7	92	67	0.20	54
8	94	73	1.00	31

Table S3 The Conversion of HMF to methyl cyclopentenolone.^a

^{*a*} Reaction conditions: Pd/Nb₂O₅-400 (20 mg), 2.00 g HMF aqueous solution (1 mmol) 413 K, 4 MPa H₂, 6 h for HMF hydrogenation and 10.0 g aqueous solution of NaOH, 4 h, room temperature for the conversion of HHD to MCP; ^{*b*} The selectivity of HHD from HMF; ^{*c*} The isolated yield of MCP based on the amount of HMF.

Fig. S4 Typical GC traces for the hydrogenation of HMF to HHD (Table1, Entry 4). The compounds correspond to retention time: 2.195 min (2,5-hexanedione), 2.693 min (internal standard), 3.994 min (HHD), 4.661 min (DHMF), 4.998 min (THFDM) 5.117 min (HMF).

Fig. S5 ¹H and ¹³C NMR spectra of MCP.

Fig. S6 ¹H and ¹³C NMR spectra of HHD.