Supporting information

Carbonated water for the separation of carboxylic compounds: a chromatography approach

Xilong Yuan, Bruce E. Ritcher, Kunqiang Jiang, Kyle J. Boniface, Alex Cormier, Connor A. Sanders, Calvin Palmer, Philip G. Jessop, Michael F. Cunningham, Richard D. Oleschuk
Sample calculation

Amine functional group density

Supplemental figures

Figure S-1. pH of CO$_2$ loaded water at various partial pressure

Figure S-2. SEM images of functionalized silica spheres

Figure S-3. 13C and 29Si NMR spectra and peak assignments of functionalized silica spheres

Reference
Amine functional group density

The density of functional groups is calculated based upon the weight percentage of nitrogen on the functionalized silica spheres. For example, in 100 g of dried primary amine functionalized silica material, there is 0.51 g of nitrogen. The amine group density in each gram of dry material is calculated as follows:

\[
N = \frac{w}{M_w} \frac{1}{100 \text{ g}}
\]

\[
= \frac{0.51 \text{ g}}{14.0 \text{ g mol}^{-1}} \frac{1}{100 \text{ g}}
\]

\[
= 0.364 \text{ mmol g}^{-1}
\]
Figure S-1. The measured pH of CO$_2$ dissolved in water produced post-pump by mixing different ratios of CO$_2$-saturated water (1 bar) and N$_2$ bubbled water; calculated pH of CO$_2$ dissolved water at different CO$_2$ partial pressure. The plot identifies the pH range accessible with a water / CO$_2$-modified solvent system. This figure is reproduced from another paper.*
Figure S-2. Representative scanning electron microscope images of silica spheres after the functionalization reaction at two different magnifications. The images are obtained from a FEI MLA 650 FEG Scanning Electron Microscopy.
Figure S-3. Solid-state NMR spectra and peak assignments. (a) 29Si NMR spectrum of tertiary amine functionalized silica. (b) 13C NMR spectrum of primary amine functionalized silica. (c) 13C NMR spectrum of secondary amine functionalized silica. (d) 13C NMR spectrum of tertiary amine functionalized silica.
Reference