Supporting Information (SI)

Transition-Metal-Free Base-Controlled Chemoselective Conjugate Addition and Reduction of α,β-Unsaturated Carbonyl Compounds via A Boration/Protodeboronation Strategy

Xi Huanga, Junjie Hua, Mengying Wua, Jiayi Wanga, Yanqing Penga, and Gonghua Songa,*

a Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China. Fax: +86-21-64252603; E-mail: ghsong@ecust.edu.cn
1. Experimental Section

General Remarks

All reagents were of analytical grade and obtained from commercial suppliers; unless stated otherwise, all reagents were used without further purification. Chalcones were synthesized by standard method and were confirmed by GC-MS. The crude products were all recrystallized from 98% ethanol. The microwave synthesizer used in the experiments was a Biotage Initiator (max power 300 W, Biotage® from Uppsala, Sweden). The preparative thin-layer chromatography plates used were HSGF 254 plates (thickness of coating: 0.4-0.5 mm, 20 cm × 20 cm, Huanghai® from Yantai, Shandong province, China). The 1H NMR and 13C NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz and 100 MHz, respectively) using TMS as internal standard. CDCl$_3$ was used as the NMR solvent for α,β-unsaturated carbonyl compounds substrates in most cases. Chemical shifts were recorded in parts per million (d) relative to CDCl$_3$ at 7.26 for 1H NMR and 77.23 for 13C NMR. Gas chromatography-mass spectrometry (GC-MS) was performed on Agilent 7890A/5975C. Gas chromatograms were recorded on Agilent 7890A.

2. Experimental Procedure

General procedure

General procedure A for optimization of reaction condition: A mixture of the chalcone (104.1mg, 0.5 mmol), bis(pinacolato)diboron, base and solvent was placed in a 10-mL microwave tube with a magnetic stirring bar. After being sealed with a cap, the reaction tube was then placed into an oil bath and the reaction was conducted at 70 °C for the indicated period of time. After the reaction was finished, dodecane (50.0 mg) was added into the mixture as an internal standard. CDCl$_3$ was used as the NMR solvent for α,β-unsaturated carbonyl compounds substrates in most cases. Chemical shifts were recorded in parts per million (d) relative to CDCl$_3$ at 7.26 for 1H NMR and 77.23 for 13C NMR. Gas chromatography-mass spectrometry (GC-MS) was performed on Agilent 7890A/5975C. Gas chromatograms were recorded on Agilent 7890A.

General procedure B (conventional heating) for β-boration of α,β-unsaturated carbonyl compounds with bis(pinacolato)diboron: A mixture of the α,β-unsaturated enones/esters (0.5 mmol), bis(pinacolato)diboron (190.5mg, 0.75 mmol) and a mixed solvent (ethanol:water = 6:1, 1.5 mL) was placed in a 10-mL microwave tube with a magnetic stirring bar. After being sealed with a cap, the tube was heated at 70 °C for 2-12 hours. The resulting suspension was diluted with water (2.0 mL) and extracted with ethyl acetate (6.5 mL × 3). The combined organic layers were washed with brine and dried over MgSO$_4$, and the solvents were removed under vacuum. The resultant crude residue was purified by preparative thin-layer chromatography to give the product 3 (eluent: ethyl acetate: cyclohexane = from 1:10 to 1:100). The products were further characterized by GC/MS, 1H NMR and 13C NMR.

General procedure C (conventional heating) for β-boration of α,β-unsaturated carbonyl compounds with bis(pinacolato)diboron in presence of base: A mixture of the α,β-unsaturated enones/esters (0.5 mmol), bis(pinacolato)diboron (190.5mg, 0.75 mmol), Et$_3$N (5.1 mg, 0.05 mmol) and a mixed solvent (ethanol:water = 6:1, 1.5 mL) was placed in a 10-mL microwave tube with a magnetic stirring bar. After being sealed with a cap, the tube was heated at 70 °C for 0.5-2 hours. The resulting suspension was diluted with water (2.0 mL) and extracted with ethyl acetate (6.5 mL × 3). The combined organic layers were washed with brine and dried over MgSO$_4$, and the solvents were removed under vacuum. The resultant crude residue was purified by preparative thin-layer chromatography to give the product 3 (eluent: ethyl acetate: cyclohexane = from 1:10 to 1:100). The products were further characterized by GC/MS, 1H NMR and 13C NMR.

General procedure D (microwave heating) for reduction of α,β-unsaturated carbonyl compounds with bis(pinacolato)diboron: A mixture of the α,β-unsaturated carbonyl compounds (0.5 mmol), bis(pinacolato)diboron (190.5mg, 0.75 mmol), Cs$_2$CO$_3$ (16.3 mg, 0.05 mmol) and ethanol (1.5 mL) was placed in a 10-mL microwave tube with a magnetic stirring bar. After being sealed with a cap, the tube was then placed into the microwave synthesizer and the reaction was run at 110 °C for 20-60 minutes. The resulting suspension was diluted with water (2.0 mL) and extracted with ethyl acetate (6.5 mL × 3). The combined organic layers were washed with brine and dried over MgSO$_4$, and the solvents were removed under vacuum. The resultant crude residue was purified by preparative thin-layer chromatography to give the product 4 (eluent: ethyl acetate: cyclohexane = from 1:10 to 1:100). The products were further characterized by GC/MS, 1H NMR and 13C NMR.
3. Characterization and NMR spectra of the β-boration products:

3a 1,3-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one.¹

![Chemical structure of 3a](image)

¹¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.95 (d, J = 1.4 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.43 (dd, J = 10.5, 4.7 Hz, 2H), 7.32 – 7.26 (m, J = 8.0 Hz, 4H), 7.19 – 7.14 (m, 1H), 3.56 (dd, J = 18.3, 10.9 Hz, 1H), 3.46 – 3.37 (dd, 1H), 2.80 (dd, J = 10.8, 5.0 Hz, 1H), 1.24 (s, 6H), 1.16 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 199.73, 141.96, 136.79, 132.95, 128.53 (2C), 128.51 (2C), 128.40 (2C), 125.61, 83.41 (2C), 43.28 (2C), 24.58 (2C), 24.54 (2C).

MS (GC-MS) m/z: 336 (M⁺), 321, 278, 253, 236, 209, 192, 103, 77, 55.

3b 1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(p-tolyl)propan-1-one.²

![Chemical structure of 3b](image)

¹¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.94 (m, 2H), 7.55 – 7.50 (m, 1H), 7.45 – 7.40 (m, 2H), 7.21 – 7.17 (m, 2H), 7.08 (d, J = 7.9 Hz, 2H), 3.53 (dd, J = 18.3, 10.8 Hz, 1H), 3.39 (dd, J = 15.1, 3.2 Hz, 1H), 2.76 (dd, J = 10.8, 5.0 Hz, 1H), 2.31 (s, 3H), 1.24 (s, 6H), 1.17 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 199.77, 138.82, 136.86, 134.99, 132.87, 129.24 (2C), 128.47 (2C), 128.28 (2C), 128.05 (2C), 83.34 (2C), 43.48 (2C), 24.59 (2C), 24.56 (2C), 20.99.

MS (GC-MS) m/z: 350 (M⁺), 325, 292, 267, 253, 236, 206, 105, 77, 51.

3c 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-di-p-tolylpropan-1-one (new compound).

![Chemical structure of 3c](image)

¹¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.84 (s, 1H), 7.24 – 7.17 (m, 4H), 7.08 (d, J = 7.9 Hz, 2H), 3.50 (dd, J = 18.2, 10.9 Hz, 1H), 3.36 (dd, J = 18.3, 5.2 Hz, 1H), 2.74 (dd, J = 10.9, 5.1 Hz, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 1.24 (s, 6H), 1.16 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 199.41, 143.60, 138.92, 134.94, 134.93, 129.23 (2C), 129.15 (2C), 128.29 (2C), 128.18 (2C), 83.30 (2C), 43.39 (2C), 24.60 (2C), 24.57 (2C), 21.63, 21.00.

MS (GC-MS) m/z: 364 (M⁺), 349, 306, 281, 264, 237, 220, 205, 145, 117, 91.

HRMS (EI) m/z calcd for C₂₃H₂₉BO₃ [M⁺] 364.2210, found 364.2211.

3d 3-(4-methoxyphenyl)-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one.²
\[\text{3e 1-(4-methoxyphenyl)-3-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one.}^3\]

\[\text{3f 3-(4-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(p-tolyl)propan-1-one (new compound).}\]

\[\text{3g 1-(4-chlorophenyl)-3-(4-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (new compound).}\]
1H NMR (400 MHz, CDCl$_3$) δ 7.90 – 7.84 (m, 2H), 7.41 – 7.34 (m, 2H), 7.24 – 7.17 (m, 2H), 6.86 – 6.79 (m, 2H), 3.75 (s, 3H), 3.46 (dd, $J = 18.3, 10.7$ Hz, 1H), 3.32 (dd, $J = 18.3, 5.2$ Hz, 1H), 2.74 (dd, $J = 10.7, 5.1$ Hz, 1H), 1.24 (s, 6H), 1.16 (s, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 198.56 (s), 157.71 (s), 139.25 (s), 135.14 (s), 133.62 (s), 129.48 (2C), 129.28 (2C), 128.77 (2C), 114.03 (2C), 83.39 (2C), 55.16, 43.44 (2C), 24.59 (2C), 24.55 (2C).

MS (GC-MS) m/z: C$_{22}$H$_{26}$B$_3$ClO$_4$ 400 (M+), 385, 342, 317, 300, 273, 162, 139, 111, 84.

MS (GC-MS) m/z: C$_{22}$H$_{26}$B$_3^{17}$ClO$_4$ 402 (M+), 387, 344, 319, 302, 275, 162, 141, 113, 84.

HRMS (EI) m/z calcd for C$_{22}$H$_{26}$B$_3$ClO$_4$ [M$^+$] 400.1613, found 400.1611.

HRMS (EI) m/z calcd for C$_{22}$H$_{26}$B$_3^{17}$ClO$_4$ [M$^+$] 402.1583, found 402.1588.

3h 4-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-one.1

3i 3-(4-fluorophenyl)-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one.4

3j 1-(4-fluorophenyl)-3-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one.5
1H NMR (400 MHz, CDCl3) δ 8.01–7.98 (m, 1H), 7.98–7.94 (m, 1H), 7.45–7.34 (m, 1H), 7.32–7.25 (m, 4H), 7.10 (dd, J = 14.3, 5.6 Hz, 2H), 3.52 (dd, J = 18.2, 10.9 Hz, 1H), 3.38 (dd, J = 18.4, 4.9 Hz, 1H), 2.79 (dd, J = 10.8, 5.0 Hz, 1H), 1.24 (s, 6H), 1.16 (s, 6H); 13C NMR (101 MHz, CDCl3) δ 198.14, 165.67 (d, JCF = 254.3 Hz, 1C), 141.79, 133.20 (d, JCF = 3.0 Hz, 1C), 130.66 (d, JCF = 9.3 Hz, 2C), 128.55 (2C), 128.36 (2C), 125.66, 115.56 (d, JCF = 21.8 Hz, 2C), 83.44 (2C), 43.13 (2C), 24.85 (2C), 24.55 (2C).

MS (GC-MS) m/z: 354 (M+), 339, 296, 271, 254, 227, 210, 123, 84.

3k 3-(4-fluorophenyl)-1-(3-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (new compound).

1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 7.7 Hz, 1H), 7.48 (s, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.27–7.23 (m, 2H), 7.09 (dd, J = 8.3, 2.3 Hz, 1H), 6.96 (t, J = 8.7 Hz, 2H), 3.84 (s, 3H), 3.49 (dd, J = 18.2, 10.3 Hz, 1H), 3.38 (dd, J = 18.3, 5.4 Hz, 1H), 2.77 (dd, J = 10.3, 5.3 Hz, 1H), 1.24 (s, 6H), 1.17 (s, 6H); 13C NMR (101 MHz, CDCl3) δ 199.35, 161.17 (d, JCF = 243.3 Hz, 1C), 159.78, 138.08, 137.52 (d, JCF = 3.1 Hz, 1C), 129.71 (d, JCF = 7.7 Hz, 2C), 129.51, 120.72, 119.48, 115.24 (d, JCF = 21.0 Hz, 2C), 112.30, 83.49 (2C), 55.45, 43.34 (2C), 24.57 (2C), 24.52 (2C).

MS (GC-MS) m/z: 384 (M+), 369, 301, 284, 257, 240, 225, 196, 133, 107, 84, 55.

HRMS (EI) m/z calcld for C22H26BF4O4 [M]+: 384.1908, found 384.1912.

3l 3-(4-chlorophenyl)-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one.

1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 7.3 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.15 (s, 4H), 3.42 (dd, J = 18.3, 10.4 Hz, 1H), 3.31 (dd, J = 18.3, 5.3 Hz, 1H), 2.69 (dd, J = 10.3, 5.3 Hz, 1H), 1.15 (s, 6H), 1.08 (s, 6H); 13C NMR (101 MHz, CDCl3) δ 199.40, 140.54, 136.64, 133.07, 131.31 129.74 (2C), 128.59 (2C), 128.54 (2C), 128.06 (2C), 83.54 (2C), 42.95 (2C), 24.58 (2C), 24.53 (2C).

MS (GC-MS) m/z: C21H22B3ClO3 370 (M+), 355, 312, 287, 270, 243, 191, 103, 84.

MS (GC-MS) m/z: C21H22B3ClO3 372 (M+), 357, 314, 289, 272, 245, 193, 103, 84.

3m 1-(4-chlorophenyl)-3-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one.
1H NMR (400 MHz, CDCl$_3$) δ 7.91 (t, $J = 2.2$ Hz, 1H), 7.89 (t, $J = 2.1$ Hz, 1H), 7.41 (dt, $J = 4.1$, 2.6 Hz, 2H), 7.31 – 7.26 (m, 4H), 7.20 – 7.14 (m, 1H), 1.24 (s, 6H), 1.16 (s, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 199.39, 141.08, 136.61, 133.09, 131.54 (2C), 130.17 (2C), 128.56 (2C), 128.07 (2C), 119.37, 83.56 (2C), 42.91 (2C), 24.59 (2C), 24.55(2C).

MS (GC-MS) m/z: C$_{21}$H$_{24}$B$_7$ClO$_3$ 414 (M+), 399, 385, 333, 314, 287, 270, 243, 226, 191, 139, 111, 84.

3n 3-(4-bromophenyl)-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one.4

1H NMR (400 MHz, CDCl$_3$) δ 7.95 (d, $J = 7.1$ Hz, 2H), 7.53 (t, $J = 7.4$ Hz, 1H), 7.43 (t, $J = 7.6$ Hz, 2H), 7.40 – 7.36 (m, 2H), 7.21 – 7.16 (m, 2H), 3.51 (dd, $J = 18.3$, 10.4 Hz, 1H), 3.40 (dd, $J = 18.3$, 5.4 Hz, 1H), 2.76 (dd, $J = 10.3$, 5.3 Hz, 1H), 1.24 (s, 6H), 1.17 (s, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 199.37, 141.09, 136.60, 133.08, 131.53 (2C), 130.17 (2C), 128.55 (2C), 128.05 (2C), 119.35, 83.55 (2C), 42.88 (2C), 24.58 (2C), 24.54 (2C).

MS (GC-MS) m/z: C$_{21}$H$_{24}$B$_7$ClO$_3$ 414 (M+), 399, 385, 333, 314, 287, 270, 243, 226, 191, 105, 84.

3o 1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(4-(trifluoromethyl)phenyl)propan-1-one.4

1H NMR (400 MHz, CDCl$_3$) δ 7.96 (dd, $J = 5.2$, 3.3 Hz, 2H), 7.53 (ddd, $J = 7.4$, 3.9, 1.5 Hz, 3H), 7.43 (td, $J = 6.8$, 1.4 Hz, 4H), 3.56 (dd, $J = 18.3$, 10.3 Hz, 1H), 3.44 (dd, $J = 18.3$, 5.3 Hz, 1H), 2.89 (dd, $J = 10.2$, 5.3 Hz, 1H), 1.25 (s, 6H), 1.17 (s, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 199.14, 146.50 (d, $J = 1.1$ Hz, 1C), 136.57, 133.13, 128.68 (2C), 128.57 (2C), 128.06 (2C), 127.90 (q, $J = 33.3$ Hz, 1C), 125.38 (q, $J = 3.8$ Hz, 2C), 124.45 (dd, $J = 271.7$ Hz, 1C), 83.66 (2C), 42.68 (2C), 24.55 (2C), 24.52 (2C).

MS (GC-MS) m/z: 404 (M+), 389, 346, 304, 260, 191, 105, 84, 77, 51.

3p benzy1 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoate. 6
1H NMR (400 MHz, CDCl₃) δ 7.30 – 7.18 (m, 5H), 5.02 (s, 2H), 2.41 (t, J = 7.5 Hz, 2H), 1.13 (s, 12H), 0.96 (t, J = 7.5 Hz, 2H); 13C NMR (101 MHz, CDCl₃) δ 174.42, 136.25, 128.46 (2C), 128.06 (2C), 128.04, 83.22 (2C), 66.04, 28.82 (2C), 24.74 (4C).

MS (GC-MS) m/z: 290 (M⁺), 275, 190, 161, 141, 91, 69, 55.

3q methyl 3-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoate.⁵

1H NMR (400 MHz, CDCl₃) δ 7.26 (t, J = 7.4 Hz, 2H), 7.21 (d, J = 6.8 Hz, 2H), 7.15 (t, J = 7.0 Hz, 1H), 3.65 (s, 3H), 2.90 (dd, J = 15.9, 9.8 Hz, 1H), 2.74 (dd, J = 9.7, 6.0 Hz, 1H), 2.66 (dd, J = 15.9, 5.9 Hz, 1H), 1.22 (s, 6H), 1.17 (s, 6H); 13C NMR (101 MHz, CDCl₃) δ 173.85, 141.29, 128.51 (2C), 128.18 (2C), 125.71, 83.59 (2C), 51.58, 37.12 (2C), 24.57 (2C), 24.48 (2C).

MS (GC-MS) m/z: 290 (M⁺), 275, 259, 232, 190, 146, 131, 117, 104, 83, 55.

3r ethyl 3-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoate.⁵

1H NMR (400 MHz, CDCl₃) δ 7.21 – 7.16 (m, 2H), 7.15 – 7.11 (m, 2H), 7.06 (ddd, J = 6.1, 3.6, 1.7 Hz, 1H), 4.09 – 3.97 (m, 2H), 2.80 (dd, J = 16.0, 9.9 Hz, 1H), 2.66 (dd, J = 9.9, 6.0 Hz, 1H), 2.57 (dd, J = 16.0, 6.0 Hz, 1H), 1.17 – 1.12 (m, 9H), 1.09 (s, 6H); 13C NMR (101 MHz, CDCl₃) δ 173.42, 141.37, 128.45 (2C), 128.20 (2C), 125.65, 83.54 (2C), 60.35, 37.32 (2C), 24.58 (2C), 24.49 (2C), 14.24.

MS (GC-MS) m/z: 304 (M⁺), 289, 259, 233, 176, 145, 131, 104, 83, 55.

3s benzyl 3-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoate.³

1H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 3H), 7.30 (d, J = 4.4 Hz, 2H), 7.24 (d, J = 7.0 Hz, 2H), 7.21 (d, J = 6.7 Hz, 2H), 7.15 (ddd, J = 8.2, 2.3, 1.4 Hz, 1H), 5.09 (ddd, J = 29.1, 12.4 Hz, 2H), 2.95 (dd, J = 15.2, 8.7 Hz, 1H), 2.78 (dd, J =
11.9, 5.6 Hz, 1H), 2.72 (dd, \(J = 15.2, 6.2 \) Hz, 1H), 1.19 (s, 6H), 1.14 (s, 6H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 173.28, 141.26, 136.05, 128.53 (2C), 128.50 (2C), 128.23 (2C), 128.13 (2C), 128.10, 125.74 , 83.63 (2C), 66.19, 37.29 (2C), 24.58 (2C), 24.49 (2C).
MS (GC-MS) m/z: 366 (M+), 351, 233, 217, 180, 131, 117, 91, 77, 55.
4. Characterization and NMR spectra of the reduction products:

4a 1,3-diphenylpropan-1-one.\(^7\)

\[
\begin{align*}
\text{(1,3-diphenylpropan-1-one)}
\end{align*}
\]

\(\text{\(^1\)H NMR (400 MHz, CDCl}_3\text{)} \delta 7.94 (d, J = 7.3 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.24 (d, J = 7.0 Hz, 2H), 7.19 (t, J = 7.0 Hz, 1H), 3.28 (t, J = 7.7 Hz, 2H), 3.06 (t, J = 7.7 Hz, 2H); \text{\(^{13}\)C NMR (101 MHz, CDCl}_3\text{)} \delta 199.23, 141.34, 136.90, 133.10, 128.65 (2C), 128.58 (2C), 128.48 (2C), 128.08 (2C), 126.18, 40.48, 30.17. \text{MS (GC-MS) m/z: 210 (M+), 192, 105, 91, 77, 65, 51.}\)

4b 3-(2,4-dichlorophenyl)-1-phenylpropan-1-one.\(^8\)

\[
\begin{align*}
\text{(3-(2,4-dichlorophenyl)-1-phenylpropan-1-one)}
\end{align*}
\]

\(\text{\(\text{\(^1\)H NMR (400 MHz, CDCl}_3\text{)} \delta 7.94 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 1.4 Hz, 1H), 7.24 (d, J = 8.2 Hz, 1H), 7.15 (dd, J = 8.2, 1.5 Hz, 1H), 3.28 (t, J = 7.4 Hz, 2H), 3.13 (t, J = 7.4 Hz, 2H); \text{\(^{13}\)C NMR (101 MHz, CDCl}_3\text{)} \delta 198.60, 137.45, 136.65, 134.59, 133.24, 132.66, 131.69, 129.30, 128.67 (2C), 128.05 (2C), 127.21, 38.13, 27.69. \text{C}_{15}\text{H}_{13}\text{Cl}_3\text{O MS (GC-MS) m/z: S278 (M+), 243, 225, 159, 105, 91, 77, 51.}}\)

4c 3-(4-chlorophenyl)-1-phenylpropan-1-one.\(^7\)

\[
\begin{align*}
\text{(3-(4-chlorophenyl)-1-phenylpropan-1-one)}
\end{align*}
\]

\(\text{\(\text{\(^1\)H NMR (400 MHz, CDCl}_3\text{)} \delta 7.99 – 7.88 (m, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 3.27 (t, J = 7.5 Hz, 2H), 3.04 (t, J = 7.5 Hz, 2H); \text{\(^{13}\)C NMR (101 MHz, CDCl}_3\text{)} \delta 198.85, 139.76, 136.76, 133.19, 131.88, 129.85 (2C), 128.66 (2C), 128.61 (2C), 128.03 (2C), 40.15 (s), 29.39 (s).} \text{C}_{15}\text{H}_{13}\text{Cl}_3\text{O MS (GC-MS) m/z: 244 (M+), 226, 209, 139, 111, 105, 91, 77, 51.} \text{C}_{15}\text{H}_{13}\text{Cl}_3\text{O MS (GC-MS) m/z: 246 (M+), 228, 209, 141, 113, 105, 91, 77, 51.}\)

4d 1-(4-chlorophenyl)-3-phenylpropan-1-one.\(^7\)

\[
\begin{align*}
\text{(1-(4-chlorophenyl)-3-phenylpropan-1-one)}
\end{align*}
\]
1H NMR (400 MHz, CDCl₃) δ 7.83 – 7.73 (m, 2H), 7.35 – 7.26 (m, 2H), 7.23 – 7.17 (m, 2H), 7.17 – 7.08 (m, 3H), 3.21 – 3.10 (m, 2H), 2.96 (t, J = 7.6 Hz, 2H). 13C NMR (101 MHz, CDCl₃) δ 197.97, 141.09, 139.51, 135.18, 129.49 (2C), 128.94 (2C), 128.61 (2C), 128.45 (2C), 126.26, 40.45, 30.07.

C₁₅H₁₃ClO MS (GC-MS) m/z: 244 (M+), 226, 209, 139, 111, 91, 77, 51.

C₁₅H₁₃ClO MS (GC-MS) m/z: 246 (M+), 228, 209, 141, 113, 91, 77, 51.

4g 1-(4-fluorophenyl)-3-phenylpropan-1-one.⁷

![Structure of 4g](image)

1H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 8.8, 5.4 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.20 (dd, J = 8.5, 5.5 Hz, 2H), 6.96 (t, J = 8.7 Hz, 2H), 3.27 (t, J = 7.5 Hz, 2H), 3.03 (t, J = 7.5 Hz, 2H).

13C NMR (101 MHz, CDCl₃) δ 199.03, 161.42 (d, JₐCF = 243.8 Hz, 1C), 136.99 (d, JₐCF = 3.2 Hz, 1C), 135.62, 134.14, 132.54, 129.92 (d, JₐCF = 7.8 Hz, 2C), 128.65 (2C), 128.04 (2C), 115.26 (d, JₐCF = 21.1 Hz, 2C), 40.43, 29.27.

MS (GC-MS) m/z: 228 (M+), 210, 123, 105, 95, 77, 63, 51.

4f 3-(4-fluorophenyl)-1-phenylpropan-1-one.⁷

![Structure of 4f](image)

1H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.20 (dd, J = 8.5, 5.5 Hz, 2H), 6.96 (t, J = 8.7 Hz, 2H), 3.27 (t, J = 7.5 Hz, 2H), 3.03 (t, J = 7.5 Hz, 2H).

13C NMR (101 MHz, CDCl₃) δ 199.03, 161.42 (d, JₐCF = 243.8 Hz, 1C), 136.99 (d, JₐCF = 3.2 Hz, 1C), 136.81, 133.16, 129.87 (d, JₐCF = 7.8 Hz, 2C), 128.65 (2C), 128.04 (2C), 115.26 (d, JₐCF = 21.1 Hz, 2C), 40.43, 29.27.

MS (GC-MS) m/z: 228 (M+), 210, 123, 105, 95, 77, 63, 51.

4h 3-(4-fluorophenyl)-1-(naphthalen-2-yl)propan-1-one (new compound).

![Structure of 4h](image)

1H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.78 – 7.71 (m, 2H), 7.45 (dt, J = 14.8, 7.1 Hz, 2H), 7.16 – 7.07 (m, 2H), 6.88 (t, J = 8.6 Hz, 2H), 3.28 (t, J = 7.6 Hz, 2H), 2.98 (t, J = 7.5 Hz, 2H).

13C NMR (101 MHz, CDCl₃) δ 198.96, 161.46 (d, JₐCF = 243.8 Hz, 1C), 136.99 (d, JₐCF = 3.2 Hz, 1C), 136.81, 133.16, 132.54, 129.92 (d, JₐCF = 7.8 Hz, 2C), 129.71, 129.57, 128.53 (2C), 127.82, 126.85, 123.82, 115.31 (d, JₐCF = 21.1 Hz, 2C), 40.52, 29.42.

MS (GC-MS) m/z: 278 (M+), 259, 155, 141, 127, 109, 96, 77, 51.

HRMS (EI) m/z calcld for C₁₉H₁₅F₂O [M⁺] 278.1107, found 278.1108.

4h 3-(4-bromophenyl)-1-phenylpropan-1-one.⁷

![Structure of 4h](image)

1H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.4 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 3.27 (t, J = 7.5 Hz, 2H), 3.02 (t, J = 7.5 Hz, 2H).
^1^C NMR (101 MHz, CDCl\textsubscript{3}) δ 198.80, 140.29, 136.75, 133.20, 131.57 (2C), 130.27 (2C), 128.67 (2C), 128.03 (2C), 119.90, 40.07, 29.44.

C\textsubscript{15}H\textsubscript{13}BrO MS (GC-MS) m/z: 288 (M+), 272, 209, 169, 105, 90, 77, 51.

C\textsubscript{15}H\textsubscript{13}BrO MS (GC-MS) m/z: 290 (M+), 274, 209, 171, 105, 90, 77, 51.

4i 1-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-one.7

\[
\text{F}_3\text{C} \quad \text{O} \quad \text{C}_{\text{C}} \quad \text{O} \quad \text{C}_{\text{C}}
\]

^1^H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.86 (d, J = 7.5 Hz, 2H), 7.51 – 7.41 (m, 3H), 7.36 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 3.23 (t, J = 7.5 Hz, 2H), 3.04 (t, J = 7.4 Hz, 2H); \(^1^C NMR (101 MHz, CDCl\textsubscript{3}) δ 197.52, 144.43 (d, J\textsubscript{CF} = 1.0 Hz, 1c), 135.63, 132.22, 127.78 (2C), 127.64 (2C), 127.42 (m, J\textsubscript{CF} = 32.3 Hz, 1C), 126.97 (2C), 124.39 (q, J\textsubscript{CF} = 3.8 Hz, 2C), 123.42 (q, J\textsubscript{CF} = 271.1 Hz, 1C), 38.77, 28.72.

MS (GC-MS) m/z: 278 (M+), 259, 213, 145, 105, 91, 77, 51.

4j 3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-one.7

\[
\text{OC}\quad \text{C}_{\text{C}}
\]

^1^H NMR (400 MHz, CDCl\textsubscript{3}) δ 8.05 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.34 – 7.28 (m, 2H), 7.23 (dd, J = 16.3, 7.7 Hz, 2H), 3.33 (t, J = 7.6 Hz, 2H), 3.09 (t, J = 7.6 Hz, 2H); \(^1^C NMR (101 MHz, CDCl\textsubscript{3}) δ 198.22, 140.85, 139.50 (d, J\textsubscript{CF} = 1.1 Hz, 1C), 134.40 (q, J\textsubscript{CF} = 32.9 Hz, 1C), 128.61 (2C), 128.40 (2C), 128.36 (2C), 126.31, 125.70 (d, J\textsubscript{CF} = 3.7 Hz, 2C), 123.59 (q, J\textsubscript{CF} = 272.7 Hz, 1C), 40.75, 29.94.

MS (GC-MS) m/z: 278 (M+), 259, 213, 145, 105, 91, 77, 51.

4k 1-phenyl-3-(p-tolyl)propan-1-one.7

\[
\text{O} \quad \text{C}_{\text{C}}
\]

^1^H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.94 (d, J = 7.4 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.12 (q, J = 7.9 Hz, 4H), 3.26 (t, J = 7.7 Hz, 2H), 3.02 (t, J = 7.7 Hz, 2H), 2.31 (s, 3H); \(^1^C NMR (101 MHz, CDCl\textsubscript{3}) δ 199.36, 138.25, 136.93, 135.65, 133.08, 129.26 (2C), 128.64 (2C), 128.36 (2C), 128.09 (2C), 40.65, 29.76, 21.07.

MS (GC-MS) m/z: 224 (M+), 209, 119, 105, 91, 77, 65, 51.

4l 1,3-di-p-tolylpropan-1-one.9

\[
\text{O} \quad \text{C}_{\text{C}}
\]

^1^H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.84 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.11 (q, J = 7.9 Hz, 4H), 3.23 (t, J = 7.7 Hz, 2H), 3.00 (t, J = 7.7 Hz, 2H), 2.38 (s, 3H), 2.31 (s, 3H); \(^1^C NMR (101 MHz, CDCl\textsubscript{3}) δ 199.02, 143.82, 138.35, 135.60, 134.47, 129.32 (2C), 129.24 (2C), 128.35 (2C), 128.22 (2C), 40.55, 29.85, 21.67, 21.06.

MS (GC-MS) m/z: 238 (M+), 223, 119, 105, 95, 77, 65, 51.

4m 1-(4-methoxyphenyl)-3-phenylpropan-1-one.7

\[
\text{O} \quad \text{C}_{\text{C}}
\]

^1^H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.84 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.11 (q, J = 7.9 Hz, 4H), 3.23 (t, J = 7.7 Hz, 2H), 3.00 (t, J = 7.7 Hz, 2H), 2.38 (s, 3H), 2.31 (s, 3H); \(^1^C NMR (101 MHz, CDCl\textsubscript{3}) δ 199.02, 143.82, 138.35, 135.60, 134.47, 129.32 (2C), 129.24 (2C), 128.35 (2C), 128.22 (2C), 40.55, 29.85, 21.67, 21.06.

MS (GC-MS) m/z: 238 (M+), 223, 119, 105, 95, 77, 65, 51.
1H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.8 Hz, 2H), 7.32 – 7.26 (m, 2H), 7.24 (d, J = 7.1 Hz, 2H), 7.19 (t, J = 7.0 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 3.27 – 3.19 (m, 2H), 3.04 (t, J = 7.7 Hz, 2H); 13C NMR (101 MHz, CDCl₃) δ 197.83, 163.48, 141.51, 130.34 (2C), 129.99, 128.54 (2C), 128.47 (2C), 126.12, 113.76 (2C), 55.48, 40.13, 30.36.

MS (GC-MS) m/z: 240 (M+), 209, 223, 135, 121, 107, 92, 77, 64, 51.

4n 1-(4-fluorophenyl)-3-(3-methoxyphenyl)propan-1-one.¹⁰

1H NMR (400 MHz, CDCl₃) δ 8.03 – 7.94 (m, 2H), 7.23 – 7.15 (m, 2H), 7.12 – 7.05 (m, 2H), 6.87 (ddd, J = 10.9, 8.7, 4.4 Hz, 2H), 3.81 (s, 3H), 3.25 – 3.18 (m, 2H), 3.07 – 2.99 (m, 2H); 13C NMR (101 MHz, CDCl₃) δ 198.37, 165.65 (d, J_{CF} = 254.2 Hz, 1C), 157.52, 133.44 (d, J_{CF} = 3.0 Hz, 1C), 130.74 (d, J_{CF} = 9.3 Hz, 2C), 130.19, 129.37, 127.61, 120.59, 115.58 (d, J_{CF} = 21.8 Hz, 2C), 110.29, 55.20, 38.88, 25.80.

MS (GC-MS) m/z: 258 (M+), 240, 225, 149, 135, 123, 108, 95, 77, 65, 51.

4o 3-(4-fluorophenyl)-1-(m-tolyl)propan-1-one (new compound).

1H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 6.9, 4.6 Hz, 2H), 7.33 (dt, J = 14.9, 7.5 Hz, 2H), 7.22 – 7.13 (m, 2H), 7.01 – 6.89 (m, 2H), 3.24 (t, J = 7.5 Hz, 2H), 3.02 (t, J = 7.5 Hz, 2H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl₃) δ 199.21, 161.42 (d, J_{CF} = 243.7 Hz, 1C), 138.44, 137.01 (d, J_{CF} = 3.2 Hz, 1C), 136.88, 133.90, 129.88 (d, J_{CF} = 7.8 Hz, 2C), 128.58, 128.52, 125.26, 115.24 (d, J_{CF} = 21.1 Hz, 2C), 40.46, 29.31, 21.36.

MS (GC-MS) m/z: 242 (M+), 227, 133, 119, 109, 91, 77, 65, 51.

HRMS (EI) m/z calc'd for C₁₆H₁₅FO [M⁺] 242.1107, found 242.1108.

4p 3-(4-fluorophenyl)-1-(3-methoxyphenyl)propan-1-one (new compound).

1H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 7.6, 0.9 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.25 (t, J = 7.9 Hz, 1H), 7.15 – 7.05 (m, 2H), 7.00 (ddd, J = 8.2, 2.6, 0.8 Hz, 1H), 6.92 – 6.81 (m, 2H), 3.74 (s, 3H), 3.16 (t, J = 7.5 Hz, 2H), 2.93 (t, J = 7.5 Hz, 2H); 13C NMR (101 MHz, CDCl₃) δ 198.80, 161.41 (d, J_{CF} = 243.8 Hz, 1C), 159.89, 138.20, 136.89, 129.88 (d, J_{CF} = 7.8 Hz, 2C), 128.58, 128.52, 125.26, 115.24 (d, J_{CF} = 21.1 Hz, 2C), 40.46, 29.31, 21.36.

MS (GC-MS) m/z: 258 (M+), 227, 135, 121, 107, 92, 77, 64, 51.

HRMS (EI) m/z calc'd for C₁₆H₁₅FO₂ [M⁺] 258.1056, found 258.1055.

4q 3-(3,5-dimethoxyphenyl)-1-phenylpropan-1-one.
1H NMR (400 MHz, CDCl$_3$) δ 7.95 (d, $J = 8.0$ Hz, 2H), 7.55 (t, $J = 7.3$ Hz, 1H), 7.45 (t, $J = 7.6$ Hz, 2H), 6.41 (s, 2H), 6.32 (s, 1H), 3.77 (s, 6H), 3.29 (t, $J = 7.7$ Hz, 2H), 3.01 (t, $J = 7.7$ Hz, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 199.23, 160.90 (2C), 143.73, 136.84 (s), 133.11, 128.63 (2C), 128.06 (2C), 106.50 (2C), 98.06, 55.28 (2C), 40.30, 30.45.

MS (GC-MS) m/z: 270 (M+), 252, 165, 150, 135, 105, 91, 77, 64, 51.

HRMS (EI) m/z calcd for C$_{17}$H$_{18}$O$_3$ [M]$^+$ 270.1256, found 270.1255.

3r 1-phenyl-3-(3,4,5-trimethoxyphenyl)propan-1-one (new compound).

3s 3-(4-(dimethylamino)phenyl)-1-(4-methoxyphenyl)propan-1-one (new compound).

3t 3-(benzo[d][1,3]dioxol-5-yl)-1-phenylpropan-1-one.

3u methyl 3-phenylpropanoate.5
1H NMR (400 MHz, CDCl$_3$) δ 7.26 (dd, J = 10.4, 4.4 Hz, 2H), 7.20 – 7.13 (m, 3H), 3.62 (s, 3H), 2.93 (t, J = 7.8 Hz, 2H), 2.64 – 2.57 (m, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 173.27 (s), 140.58 (s), 128.54 (s), 128.31 (s), 126.31 (s), 51.55 (s), 35.71 (s), 30.99 (s).

MS (GC-MS) m/z: 164 (M+), 133, 104, 91, 77, 65, 51.

4v ethyl 3-phenylpropanoate.5

1H NMR (400 MHz, CDCl$_3$) δ 7.29 – 7.22 (m, 2H), 7.22 – 7.13 (m, 3H), 4.10 (q, J = 7.1 Hz, 2H), 2.93 (t, J = 7.8 Hz, 2H), 2.63 – 2.55 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 172.84 (s), 140.63 (s), 128.50 (s), 128.34 (s), 126.26 (s), 60.37 (s), 35.96 (s), 31.02 (s), 14.23 (s).

MS (GC-MS) m/z: 178 (M+), 133, 104, 91, 79, 65, 51.

4w benzyl 3-phenylpropanoate.

1H NMR (400 MHz, CDCl$_3$) δ 7.37 – 7.23 (m, 7H), 7.18 (dd, J = 8.9, 7.3 Hz, 3H), 5.10 (s, 2H), 2.96 (t, J = 7.8 Hz, 2H), 2.67 (t, J = 7.8 Hz, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 172.73, 140.46, 136.01, 128.58 (2C), 128.55 (2C), 128.35 (2C), 128.24 (2C), 126.32 (2C), 66.31, 35.93, 31.00.

MS (GC-MS) m/z: 240 (M+), 180, 149, 107, 91, 79, 65, 51.

HRMS (EI) m/z calc for C$_{16}$H$_{16}$O$_2$ [M]$^+$ 240.1150, found 240.1152.

4x 1-(4-methoxyphenyl)-3-(pyridin-2-yl)propan-1-one.11

1H NMR (400 MHz, CDCl$_3$) δ 8.53 (s, 1H), 8.45 (d, J = 4.1 Hz, 1H), 7.93 (d, J = 8.9 Hz, 2H), 7.59 (d, J = 7.9 Hz, 1H), 7.22 (dd, J = 7.7, 4.9 Hz, 1H), 6.93 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H), 3.27 (t, J = 7.5 Hz, 2H), 3.07 (t, J = 7.4 Hz, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 197.03, 163.59, 149.86, 147.51, 136.85, 136.17, 130.28 (2C), 129.71, 123.40, 113.80 (2C), 55.49, 39.37, 27.27.

MS (GC-MS) m/z: 241 (M+), 224, 212, 135, 121, 107, 92, 77, 64, 55.

4y 4-phenylbutan-2-one.9
\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta \ 7.27 \ (t, \ J = 7.5 \text{ Hz}, \ 2\text{H}), \ 7.18 \ (t, \ J = 6.8 \text{ Hz}, \ 3\text{H}), \ 2.89 \ (t, \ J = 7.6 \text{ Hz}, \ 2\text{H}), \ 2.75 \ (t, \ J = 7.6 \text{ Hz}, \ 2\text{H}), \ 2.13 \ (s, \ 3\text{H}); \ \ ^{13}\text{C NMR} \ (101 \text{ MHz, CDCl}_3) \delta \ 207.96 \ (s), \ 141.01 \ (s), \ 128.51 \ (2\text{C}), \ 128.31 \ (2\text{C}), \ 126.13 \ (s), \ 45.19 \ (2\text{C}), \ 30.08 \ (2\text{C}), \ 29.75 \ (2\text{C}). \]

MS (GC-MS) \(m/z \): 148 (M+), 133, 115, 105, 91, 77, 65, 51.

4z 1,5-diphenylpent-4-en-1-one.\(^\text{12}\)

\[\begin{array}{c}
\text{苯} \\
\downarrow \\
\text{\(4z\)} \\
\text{\(\text{1,5-diphenylpent-4-en-1-one.}\)\(^\text{12}\)}
\end{array} \]

\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta \ 7.91 – 7.84 \ (m, \ 2\text{H}), \ 7.55 \ (t, \ J = 7.4 \text{ Hz}, \ 1\text{H}), \ 7.45 \ (t, \ J = 7.5 \text{ Hz}, \ 2\text{H}), \ 7.34 – 7.27 \ (m, \ 2\text{H}), \ 7.22 \ (dd, \ J = 7.1, 4.9 \text{ Hz}, \ 3\text{H}), \ 7.07 \ (dq, \ J = 20.9, 7.0 \text{ Hz}, \ 1\text{H}), \ 6.86 \ (d, \ J = 15.4 \text{ Hz}, \ 1\text{H}), \ 2.84 \ (q, \ J = 7.4 \text{ Hz}, \ 2\text{H}), \ 2.69 – 2.59 \ (m, \ 2\text{H}); \ ^{13}\text{C NMR} \ (101 \text{ MHz, CDCl}_3) \delta \ 190.92, \ 148.48, \ 140.83, \ 137.88, \ 132.68, \ 128.57 \ (2\text{C}), \ 128.53 \ (2\text{C}), \ 128.52 \ (2\text{C}), \ 128.43 \ (2\text{C}), \ 126.57, \ 126.22, \ 34.55, \ 34.52. \]

MS (GC-MS) \(m/z \): 236 (M+), 217, 145, 129, 115, 105, 91, 77, 65, 51.
5. ICP-AES Detection Report of the β-boration and reduction reaction liquids:

<table>
<thead>
<tr>
<th>部门</th>
<th>东北大学</th>
</tr>
</thead>
<tbody>
<tr>
<td>试样名称</td>
<td>GREHX</td>
</tr>
<tr>
<td>编号</td>
<td>YP20170554</td>
</tr>
<tr>
<td>试验日期</td>
<td>2017.11.14</td>
</tr>
</tbody>
</table>

试样结果：

1. 和2号相同
2. Co: <2mg/kg Cr: <2mg/kg Cu: <2mg/kg
3. Fe: <5mg/kg Mn: <2mg/kg Ni: <2mg/kg
4. Pb: <2mg/kg Pt: <2mg/kg Rh: <2mg/kg
5. Zn: <5mg/kg
6. VX未检出
6. 1H NMR of Isotope-Labeled Experiments

Sheme 2a: D-deuterated 4a-D 1,3-diphenylpropan-1-one-2,2,3-d$_3$

\[
\begin{array}{c}
\text{O} \\
\text{D} \\
\text{D} \\
\text{D} \\
\text{D}
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.87 (s, 1H), 7.85 (s, 1H), 7.45 (t, $J = 7.3$ Hz, 1H), 7.35 (t, $J = 7.6$ Hz, 2H), 7.24 – 7.18 (m, 2H), 7.16 (d, $J = 7.4$ Hz, 2H), 7.11 (t, $J = 7.1$ Hz, 1H), 3.17 (d, $J = 6.9$ Hz, 0.15H), 2.95 (d, $J = 6.0$ Hz, 1.06H).

HR-MS(ToF MS El$^+$, 1.91e4): 213.1223 (M$^+$).

Sheme 2b: 3a 1,3-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one-2-d

\[
\begin{array}{c}
\text{B} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}
\]

(20%)

1H NMR (400 MHz, CDCl$_3$) δ 7.94 (d, $J = 7.2$ Hz, 2H), 7.50 (t, $J = 7.4$ Hz, 1H), 7.40 (t, $J = 7.6$ Hz, 2H), 7.28 (dt, $J = 15.2$, 7.4 Hz, 4H), 7.19 – 7.10 (m, 1H), 3.54 (dd, $J = 18.3$, 10.9 Hz, 1H), 3.39 (dd, $J = 18.3$, 5.0 Hz, 0.8H), 2.80 (dd, $J = 10.9$, 5.2 Hz, 1H), 1.24 (s, 6H), 1.16 (s, 6H).

Sheme 2c: 3a 1,3-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one

\[
\begin{array}{c}
\text{B} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.85 (d, $J = 7.3$ Hz, 2H), 7.42 (t, $J = 7.4$ Hz, 1H), 7.32 (t, $J = 7.6$ Hz, 2H), 7.24 – 7.15 (m, 4H), 7.10 – 7.00 (m, 1H), 3.45 (dd, $J = 18.3$, 10.9 Hz, 1H), 3.31 (dd, $J = 18.3$, 5.0 Hz, 1H), 2.70 (dd, $J = 10.9$, 5.0 Hz, 1H), 1.15 (s, 6H), 1.07 (s, 6H).

Sheme 2d: 3a 1,3-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one

\[
\begin{array}{c}
\text{B} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}
\]

(15%)

1H NMR (400 MHz, CDCl$_3$) δ 7.96 (d, $J = 7.2$ Hz, 2H), 7.53 (t, $J = 7.4$ Hz, 1H), 7.43 (t, $J = 7.6$ Hz, 2H), 7.33 – 7.25 (m, 4H), 7.19 – 7.13 (m, 1H), 3.55 (dd, $J = 18.3$, 10.9 Hz, 1H), 3.42 (dd, $J = 18.3$, 5.0 Hz, 0.85H), 2.80 (dd, $J = 10.9$, 5.1 Hz, 1H), 1.24 (s, 6H), 1.16 (s, 6H).

References
1H NMR spectra of 3a

13C NMR spectra of 3a
1H NMR spectra of 3b

^{13}C NMR spectra of 3b
1H NMR spectra of $3c$

^{13}C NMR spectra of $3c$
1H NMR spectra of 3d

^{13}C NMR spectra of 3d
1H NMR spectra of $3e$

13C NMR spectra of $3e$
1H NMR spectra of 3f

13C NMR spectra of 3f
1H NMR spectra of 3g

^{13}C NMR spectra of 3g
1H NMR spectra of 3h

^{13}C NMR spectra of 3h
1H NMR spectra of 3i

13C NMR spectra of 3i
1H NMR spectra of 3j

13C NMR spectra of 3j
1H NMR spectra of 3k

13C NMR spectra of 3k
1H NMR spectra of 3l

13C NMR spectra of 3l
1H NMR spectra of 3m

13C NMR spectra of 3m
^{1}H NMR spectra of 3n

^{13}C NMR spectra of 3n
^1H NMR spectra of 3o

^{13}C NMR spectra of 3o
1H NMR spectra of 3p

13C NMR spectra of 3p
1H NMR spectra of 3q

13C NMR spectra of 3q
1H NMR spectra of 3r

13C NMR spectra of 3r
1H NMR spectra of $3s$

^{13}C NMR spectra of $3s$
1H NMR spectra of 4a

13C NMR spectra of 4a
1H NMR spectra of 4b

13C NMR spectra of 4b
1H NMR spectra of 4c

13C NMR spectra of 4c
1H NMR spectra of 4d

^{13}C NMR spectra of 4d
1H NMR spectra of 4e

13C NMR spectra of 4e
1H NMR spectra of 4f

^{13}C NMR spectra of 4f
1H NMR spectra of 4g

13C NMR spectra of 4g
1H NMR spectra of 4h

13C NMR spectra of 4h
1H NMR spectra of 4i

13C NMR spectra of 4i
1H NMR spectra of 4j

13C NMR spectra of 4j
1H NMR spectra of 4k

13C NMR spectra of 4k
1H NMR spectra of 4l

^{13}C NMR spectra of 4l
1H NMR spectra of 4m

13C NMR spectra of 4m
^1H NMR spectra of 4n

^{13}C NMR spectra of 4n
^1H NMR spectra of 4o

^{13}C NMR spectra of 4o
1H NMR spectra of 4p

13C NMR spectra of 4p
1H NMR spectra of 4q

13C NMR spectra of 4q
1H NMR spectra of 4r

^{13}C NMR spectra of 4r
1H NMR spectra of 4s

13C NMR spectra of 4s
1H NMR spectra of 4t

13C NMR spectra of 4t
1H NMR spectra of 4u

13C NMR spectra of 4u
1H NMR spectra of 4v

13C NMR spectra of 4v
1H NMR spectra of 4w

13C NMR spectra of 4w
1H NMR spectra of 4x

^{13}C NMR spectra of 4x
1H NMR spectra of 4y

^{13}C NMR spectra of 4y
1H NMR spectra of $4z$

^{13}C NMR spectra of $4z$
1H NMR spectra of 4a of Scheme 2a

1H NMR spectra of 3a of Scheme 2b
1H NMR spectra of 3a of Scheme 2c

1H NMR spectra of 3a of Scheme 2d