Supporting Information

Catalyst- and solvent-free bisphosphinylation of isothiocyanates: A practical method for the synthesis of bisphosphinoylaminomethanes

Li-Rong Wen,a,b Yong-Xu Sun,a Jin-Wei Zhang,b Wei-Si Guo,*,a,b Ming Li*,a

aState Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
bState Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, P. R. China

E-mail: nick8110@163.com, liming928@qust.edu.cn.

Table of the contents

X-ray crystallographic data for 3o...S2
General methods...S3
Preparation of starting materials..S3
Synthesis and characterization of bisphosphinoylaminomethanes 3..................S3
Synthesis and characterization of thioamide 4..S12
Synthesis and characterization of bisphosphinoylaminomethanes 5..................S12
References...S14
Profile of the reaction of 1b with 2a...S14
Hammett correlation study..S15
Testing the generation of H2S with lead acetate strip......................................S15
EDS spectrum for the detection of elemental sulfur..S16
1H NMR and 13C NMR spectra of bisphosphinoylaminomethanes...................S17
Molecular structure and crystallographic data of 3o

Table S1. Crystal data and structure refinement for 3o

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{39}H_{31}NO_2P_2</td>
</tr>
<tr>
<td>CCDC number</td>
<td>1503930</td>
</tr>
<tr>
<td>Formula weight</td>
<td>607.59</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>173.150</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1 21/n 1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 11.651(4) Å, b = 11.814(3) Å, c = 23.050(7) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>3110.4(15) Å^3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.297 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.176 mm^{-1}</td>
</tr>
<tr>
<td>F(000)</td>
<td>1272</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.352 x 0.317 x 0.249 mm^3</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.945 to 27.490°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-15<=h<=15, -15<=k<=15, -28<=l<=29</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>20013</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>7006 [R(int) = 0.0456]</td>
</tr>
<tr>
<td>Completeness to theta = 26.000°</td>
<td>98.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.00000 and 0.89032</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>7006 / 0 / 401</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.230</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R_1 = 0.0718, wR_2 = 0.1217</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R_1 = 0.0812, wR_2 = 0.1258</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.280 and -0.371 e.Å^{-3}</td>
</tr>
</tbody>
</table>
General methods

Unless noted, all commercial reagents and solvents were used without further purification. Melting points were recorded on a RY-1 microscopic melting apparatus and uncorrected. 1H NMR spectra were recorded on 500 MHz and 13C NMR spectra were recorded on 125 MHz by using a Bruker Avance 500 spectrometer. Chemical shifts were reported in parts per million (δ) relative to tetramethylsilane (TMS). Mass spectras were obtained on an Ultima Global spectrometer with an ESI source. The X-ray single-crystal diffraction was performed on Saturn 724+ instrument. Silica gel (200–300 mesh) for column chromatography and silica GF254 for TLC were produced by Qingdao Marine Chemical Company (China). The analysis of elemental sulfur was performed on a JSM-6700F scanning electron microscope (SEM) equipped with a X-MaxN-80 energy dispersive X-ray spectrometer (EDS).

Preparation of starting materials

Aryl isothiocyanates1 and phosphine oxides2 were prepared according to the literatures.

General procedure for the synthesis of bisphosphinoylaminomethanes 3

To a 15 mL sealed tube was charged with a mixture of isothiocyanate 1 (0.4 mmol) and phosphine oxide 2 (0.8 mmol). The reaction mixture was stirred at 110 °C for 6 h. After completion, the mixture was cooled to room temperature, added with EtOAc (1.0 mL), and stirred for 15 min. The crude solid was then filtered and washed with EtOAc. After dried in vacuum, the product 3 was obtained as a solid.

(Phenylaminomethylene)bis(diphenylphosphine oxide) (3a)3

![Chemical Structure](image)

Following the general procedure, 3a was isolated as a white solid from phenyl isothiocyanate 1a (54 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 230–232 °C; R$_f$ = 0.25 (DCM/MeOH = 30:1 v/v); 142 mg, 70% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.66–7.94 (m, 8H), 7.23–7.46 (m, 12H), 6.83–6.91 (m, 2H), 6.51–6.61 (m, 1H), 6.21–6.33 (m, 2H), 4.97–5.31 (m, 1H), 4.64 (s, 1H).

13C NMR (125 MHz, CDCl$_3$): δ 146.0 (s, 1C), 131.9 (s, 4C), 131.8 (t, J = 4.3 Hz, 4C), 131.6 (t, J = 4.7 Hz, 4C), 131.1 (dd, J = 101.5, 46.8 Hz, 4C), 128.8 (s, 2C), 128.3 (d, J = 4.9 Hz, 4C), 128.2 (d, J = 5.0 Hz, 4C), 119.1 (s, 1C), 114.0 (s, 2C), 56.9 (t, J = 64.9 Hz, 1C). HRMS (ESI-TOF, [M + H]$^+$): calcd for C$_{31}$H$_{28}$NO$_2$P$_2$, 508.1589, found 508.1589.
Methyl 4-((bis(diphenylphosphoryl)methyl)amino)benzoate (3b)

Following the general procedure, 3b was isolated as a white solid from methyl 4-isothiocyanatobenzoate 1b (77 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 270–272 °C; R_f = 0.20 (DCM/MeOH = 20:1 v/v); 197 mg, 87% yield.

^1H NMR (CDCl_3, 500 MHz): δ 7.73–7.87 (m, 8H), 7.46–7.66 (m, 2H), 7.17–7.45 (m, 12H), 6.26–6.36 (m, 2H), 5.61 (s, 1H), 5.23–5.35 (m, 1H), 3.79 (s, 3H).

^13C NMR (125 MHz, CDCl_3): δ 166.9 (s, 1C), 149.7 (s, 1C), 132.2 (s, 4C), 131.7 (s, 4C), 131.4 (s, 4C), 130.9 (s, 2C), 130.5 (dd, J = 103.7, 86.3 Hz, 4C), 128.3 (s, 8C), 119.9 (s, 1C), 112.5 (s, 2C), 55.7 (t, J = 63.8 Hz, 1C), 51.6 (s, 1C). HRMS (ESI-TOF, [M + Na]^+): calcd for C_{33}H_{29}NO_4NaP_2, 588.1470, found 588.1474.

(4-Acetylphenylaminomethylene)bis(diphenylphosphine oxide) (3c)

Following the general procedure, washed with petroleum ether/EtOAc (3: 1), 3c was isolated as a white solid from 1-(4-isothiocyanatophenyl)ethan-1-one 1c (71 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 214–216 °C; R_f = 0.25 (DCM/MeOH = 20:1 v/v); 182 mg, 83% yield.

^1H NMR (CDCl_3, 500 MHz): δ 7.62–8.01 (m, 8H), 7.49–7.62 (m, 2H), 7.19–7.48 (m, 12H), 6.32−6.37 (m, 2H), 5.41 (s, 1H), 5.21−5.30 (m, 1H), 2.41 (s, 3H).

^13C NMR (125 MHz, CDCl_3): δ 196.3 (s, 1C), 149.9 (s, 1C), 132.2 (s, 4C), 131.7 (s, 4C), 131.4 (s, 4C), 130.4 (s, 1C), 130.1 (s, 2C), 129.6 (s, 1C), 128.4 (s, 8C), 128.1 (s, 1C), 112.5 (s, 2C), 55.7 (t, J = 64.3 Hz, 1C), 26.0 (s, 1C). HRMS (ESI-TOF, [M + H]^+): calcd for C_{33}H_{30}NO_3P_2, 550.1695, found 550.1696.

(4-Cyanophenylaminomethylene)bis(diphenylphosphine oxide) (3d)

Following the general procedure, 3d was isolated as a white solid from 4-isothiocyanatobenzonitrile 1d (64 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 264–266 °C; R_f = 0.30 (DCM/MeOH = 10:1 v/v); 162 mg, 76% yield.

^1H NMR (CDCl_3, 500 MHz): δ 7.70−7.84 (m, 8H), 7.22−7.47 (m, 12H), 6.25−6.40 (m, 2H), 5.23−5.65 (m, 1H), 5.11−5.22 (m, 1H). ^13C NMR (125 MHz, CDCl_3): δ
149.3 (s, 1C), 133.1 (s, 2C), 132.2 (s, 4C), 131.7 (s, 4C), 131.3 (s, 4C), 129.9 (dd, $J = 106.1, 15.3$ Hz, 4C), 128.4 (s, 8C), 119.6 (s, 1C), 113.3 (s, 2C), 100.8 (s, 1C), 56.0 (t, $J = 63.3$ Hz, 1C).

HRMS (ESI-TOF, [M + Na]$^+$): calcd for C$_{32}$H$_{26}$N$_2$O$_2$NaP$_2$, 555.1367, found 555.1371.

(4-Trifluoromethylphenylaminomethylene)bis(diphenylphosphine oxide) (3e)

Following the general procedure, 3e was isolated as a white solid from 1-isothiocyanato-4-(trifluoromethyl)benzene 1e (92 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 270−272 °C; $R_f = 0.15$ (DCM/MeOH = 30:1 v/v); 189 mg, 82% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.60−8.00 (m, 8H), 7.27−7.46 (m, 12H), 7.07−7.14 (m, 2H), 6.24−6.46 (m, 2H), 5.10−5.24 (m, 1H), 5.03 (s, 1H).

13C NMR (125 MHz, CDCl$_3$): δ 148.6 (s, 1C), 132.1 (s, 4C), 131.7 (s, 4C), 131.4 (s, 6C), 130.5 (s, 1C), 129.8 (s, 1C), 128.3 (s, 8C), 126.1 (s, 2C), 124.4 (d, $J_{FC} = 270.2$ Hz, 1C), 120.3 (d, $J_{FC} = 35.6$ Hz, 1C), 113.0 (s, 2C), 56.3 (t, $J_{PC} = 63.6$ Hz, 1C).

HRMS (ESI-TOF, [M + H]$^+$): calcd for C$_{32}$H$_{27}$F$_3$NO$_2$P$_2$, 576.1463, found 576.1464.

(4-Nitrophenylaminomethylene)bis(diphenylphosphine oxide) (3f)

Following the general procedure, 3f was isolated as a yellow solid from 1-isothiocyanato-4-nitrobenzene 1f (72 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 263−265 °C; $R_f = 0.30$ (DCM/MeOH = 15:1 v/v); 172 mg, 78% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.56−8.01 (m, 10H), 7.17−7.52 (m, 12H), 6.28−6.42 (m, 2H), 5.69 (s, 1H), 5.16−5.28 (m, 1H).

13C NMR (125 MHz, CDCl$_3$): δ 151.4 (s, 1C), 139.4 (s, 1C), 132.4 (s, 4C), 131.8 (s, 4C), 131.4 (s, 4C), 129.9 (dd, $J = 102.7, 26.9$ Hz, 4C), 128.5 (s, 8C), 125.6 (s, 2C), 112.3 (s, 2C), 56.2 (t, $J = 62.8$ Hz, 1C).

HRMS (ESI-TOF, [M + Na]$^+$): calcd for C$_{31}$H$_{26}$N$_2$O$_4$NaP$_2$, 575.1265, found 575.1268.

(4-Fluorophenylaminomethylene)bis(diphenylphosphine oxide) (3g)

Following the general procedure, 3g was isolated as a white solid from 1-fluoro-4-isothiocyanatobenzene 1g (61 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 220−222 °C; $R_f = 0.20$ (DCM/MeOH = 30:1 v/v); 158 mg, 75% yield.
1H NMR (CDCl₃, 500 MHz): δ 7.60–8.00 (m, 8H), 7.26–7.56 (m, 12H), 6.42–6.75 (m, 2H), 6.21 (s, 2H), 4.93–5.08 (m, 1H), 4.56 (s, 1H). **13C NMR (125 MHz, CDCl₃):** δ 156.5 (d, J_{FC} = 237.4 Hz, 1C), 142.7 (s, 1C), 132.0 (s, 4C), 131.9 (s, 4C), 131.5 (s, 4C), 131.0 (dd, J_{PC} = 103.1, 64.4 Hz, 4C), 128.3 (s, 10C), 115.4 (d, J_{PC} = 20.9 Hz, 2C), 58.4 (t, J = 64.3 Hz, 1C). HRMS (ESI-TOF, [M + H]+): calcd for C₃₁H₂₇FNO₂P₂, 526.1496, found 526.1496.

1H NMR (CDCl₃, 500 MHz): δ 7.75–7.87 (m, 8H), 7.27–7.48 (m, 12H), 6.69–6.98 (m, 2H), 6.18–6.28 (m, 2H), 5.02–5.13 (m, 1H), 4.80 (s, 1H). **13C NMR (125 MHz, CDCl₃):** δ 144.8 (s, 1C), 132.0 (s, 4C), 131.8 (s, 4C), 131.4 (s, 4C), 130.9 (dd, J = 101.7, 76.8 Hz, 4C), 128.6 (s, 2C), 128.3 (s, 8C), 123.6 (s, 1C), 115.0 (s, 2C), 57.4 (t, J = 64.3 Hz, 1C). HRMS (ESI-TOF, [M + H]+): calcd for C₃₁H₂₇ClNO₂P₂, 542.1200, found 542.1202.

1H NMR (CDCl₃, 500 MHz): δ 7.67–7.94 (m, 8H), 7.25–7.50 (m, 12H), 6.82–7.09 (m, 2H), 6.15–6.21 (m, 2H), 5.02–5.12 (m, 1H), 4.80 (s, 1H). **13C NMR (125 MHz, CDCl₃):** δ 145.2 (s, 1C), 132.0 (s, 4C), 131.8 (s, 4C), 131.5 (s, 4C), 130.7 (dd, J = 102.7, 78.8 Hz, 4C), 128.3 (s, 10C), 115.6 (s, 2C), 110.9 (s, 1C), 57.1 (t, J = 64.8 Hz, 1C). HRMS (ESI-TOF, [M + H]+): calcd for C₃₁H₂₇BrNO₂P₂, 586.0695, found 586.0695.
methylbenzene 1j (60 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 225–227 °C; Rf = 0.30 (DCM/MeOH = 30:1 v/v); 115 mg, 55% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.65–7.95 (m, 8H), 7.18–7.48 (m, 12H), 6.61–6.73 (m, 2H), 6.14–6.23 (m, 2H), 5.05–5.15 (m, 1H), 4.53 (s, 1H), 2.10 (s, 3H).

13C NMR (125 MHz, CDCl$_3$): δ 143.8 (s, 1C), 131.8 (s, 8C), 131.6 (s, 6C), 130.9 (s, 1C), 130.6 (s, 1C), 129.3 (s, 3C), 128.2 (s, 8C), 114.2 (s, 2C), 57.5 (t, J = 65.0 Hz, 1C), 20.3 (s, 1C).

HRMS (ESI-TOF, [M + H]$^+$): calcd for C$_{32}$H$_{30}$NO$_2$P$_2$, 522.1746, found 522.1749.

(4-Methoxyphenylaminomethylene)bis(diphenylphosphine oxide) (3k)

Following the general procedure, the reaction temperature was 90 °C, 3k was isolated as a light yellow solid from 1-isothiocyanato-4-methoxybenzene 1k (66 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 210–212 °C; Rf = 0.15 (DCM/MeOH = 15:1 v/v); 122 mg, 57% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.75–7.88 (m, 8H), 7.27–7.50 (m, 12H), 6.43–6.48 (m, 2H), 6.19–6.24 (m, 2H), 4.95–5.07 (m, 1H), 4.38–4.45 (m, 1H), 3.64 (s, 3H).

13C NMR (125 MHz, CDCl$_3$): δ 153.0 (s, 1C), 140.3 (s, 1C), 131.9 (s, 8C), 131.5 (s, 4C), 130.5 (dd, J = 107.6, 65.8 Hz, 4C), 128.2 (s, 8C), 115.7 (s, 2C), 114.3 (s, 2C), 58.4 (t, J = 51.4 Hz, 1C), 55.6 (s, 1C).

HRMS (ESI-TOF, [M + Na]$^+$): calcd for C$_{32}$H$_{29}$NO$_3$NaP$_2$, 560.1520, found 560.1521.

(2-Chlorophenylaminomethylene)bis(diphenylphosphine oxide) (3l)

Following the general procedure, 3l was isolated as a white solid from 1-chloro-2-isothiocyanatobenzene 1l (68 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 280–282 °C; Rf = 0.30 (DCM/MeOH = 30:1 v/v); 143 mg, 66% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.77–7.89 (m, 8H), 7.21–7.48 (m, 12H), 6.86–7.14 (m, 1H), 6.78–6.84 (m, 1H), 6.44–6.50 (m, 1H), 6.33–6.36 (m, 1H), 5.17–5.23 (m, 2H).

13C NMR (125 MHz, CDCl$_3$): δ 141.6 (s, 1C), 132.1 (s, 4C), 131.7 (s, 8C), 130.8 (dd, J = 102.7, 23.9 Hz, 4C), 129.1 (s, 1C), 128.4 (t, J = 5.3 Hz, 4C), 128.3 (t, J = 5.3 Hz, 4C), 127.3 (s, 1C), 120.2 (s, 1C), 118.8 (s, 1C), 111.9 (s, 1C), 56.5 (t, J = 64.3 Hz, 1C).

HRMS (ESI-TOF, [M + H]$^+$): calcd for C$_{31}$H$_{27}$ClNO$_2$P$_2$, 542.1200, found 542.1201.
Following the general procedure, 3m was isolated as a white solid from 1-chloro-3-isothiocyanatobenzene 1m (68 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 268–270 °C; Rf = 0.30 (DCM/MeOH = 30:1 v/v); 154 mg, 71% yield.

\[^1H \text{ NMR (CDCl}_3, \text{ 500 MHz)}: \delta 8.18 (s, 2H), 7.84 (s, 11H), 7.34–7.43 (m, 6H), 6.61–6.86 (m, 2H), 6.42–6.49 (m, 1H), 5.99–5.29 (m, 1H), 5.05–3.24 (m, 1H). \]

\[^{13}C \text{ NMR (CDCl}_3): \delta 147.2 (s, 1C), 134.5 (s, 1C), 132.0 (s, 4C), 131.8 (s, 4C), 131.5 (s, 4C), 130.7 (dd, J = 103.7, 70.8 Hz, 4C), 129.7 (s, 1C), 128.3 (s, 8C), 118.8 (s, 1C), 113.8 (s, 1C), 112.1 (s, 1C), 56.8 (t, J = 64.3 Hz, 1C). \]

HRMS (ESI-TOF, [M + Na]^+): calcd for C\textsubscript{31}H\textsubscript{26}NO\textsubscript{2}NaP\textsubscript{2}Cl, 564.1025, found 564.1031.

(2-Bisphenylaminomethylene)bis(diphenylphosphine oxide) (3n)

Following the general procedure, 3n was isolated as a yellow solid from 2-isothiocyanato-1,1'-biphenyl 1n (84 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 61–63 °C; Rf = 0.25 (DCM/MeOH = 30:1 v/v); 112 mg, 48% yield.

\[^1H \text{ NMR (CDCl}_3, \text{ 500 MHz)}: \delta 7.78–7.85 (m, 4H), 7.57–7.64 (m, 4H), 7.43–7.48 (m, 2H), 7.28–7.37 (m, 9H), 7.16–7.22 (m, 4H), 6.95–6.99 (m, 1H), 6.83–6.90 (m, 3H), 6.59–6.67 (m, 1H), 6.50–6.56 (m, 1H), 5.28–5.39 (m, 1H), 4.59–4.67 (m, 1H). \]

\[^{13}C \text{ NMR (CDCl}_3): \delta 141.9 (s, 1C), 138.0 (s, 1C), 131.9 (s, 4C), 131.7 (s, 6C), 131.5 (s, 4C), 130.9 (dd, J = 104.1, 26.2 Hz, 4C), 129.9 (s, 1C), 129.0 (s, 2C), 128.8 (s, 2C), 128.4 (s, 4C), 128.1 (s, 4C), 127.4 (s, 1C), 118.1 (s, 1C), 110.4 (s, 1C), 56.2 (t, J = 64.3 Hz, 1C). \]

HRMS (ESI-TOF, [M + H]^+): calcd for C\textsubscript{37}H\textsubscript{32}NO\textsubscript{2}P\textsubscript{2}, 584.1903, found 584.1902.

(2-Phenylethynylphenylaminomethylene)bis(diphenylphosphine oxide) (3o)

Following the general procedure, 3o was isolated as a white solid from 1-isothiocyanato-2-
(phenylethynyl)benzene 1o (94 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 214–216 °C; Rf = 0.20 (DCM/MeOH = 30:1 v/v); 136 mg, 56% yield.

\(^1H\) NMR (CDCl\(_3\), 500 MHz): \(\delta\) 7.79–7.96 (m, 8H), 7.24–7.49 (m, 13H), 7.14–7.21 (m, 4H), 7.08–7.12 (m, 1H), 6.85–6.93 (m, 1H), 6.47–6.55 (m, 1H), 6.30–6.37 (m, 1H), 5.51–5.62 (m, 1H).

\(^13C\) NMR (125 MHz, CDCl\(_3\)): \(\delta\) 146.3 (s, 1C), 132.0 (s, 2C), 131.9 (s, 4C), 131.6 (s, 4C), 130.8 (dd, \(J = 104.1, 42.7\) Hz, 4C), 129.2 (s, 2C), 128.4 (s, 8C), 128.1 (s, 4C), 122.8 (s, 1C), 117.9 (s, 2C), 110.2 (s, 2C), 109.2 (s, 2C), 96.4 (s, 1C), 84.9 (s, 1C), 56.1 (t, \(J = 65.3\) Hz, 1C).

HRMS (ESI-TOF, [M + H]\(^+\)): calcd for C\(_{39}\)H\(_{32}\)NO\(_2\)P\(_2\), 608.1903, found 608.1905.

(2,4-Difluorophenylaminomethylene)bis(diphenylphosphine oxide) (3p)

Following the general procedure, 3p was isolated as a white solid from 2,4-difluoro-1-isothiocyanatobenzene 1p (68 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 258–260 °C; Rf = 0.30 (DCM/MeOH = 30:1 v/v); 161 mg, 74% yield.

\(^1H\) NMR (CDCl\(_3\), 500 MHz): \(\delta\) 7.61–8.00 (m, 8H), 6.99–7.57 (m, 12H), 6.20–6.58 (m, 3H), 4.99–5.08 (m, 1H), 4.63–4.71 (m, 1H).

\(^13C\) NMR (125 MHz, CDCl\(_3\)): \(\delta\) 155.1 (d, \(J_{FC} = 230.2\) Hz, 1C), 151.0 (d, \(J_{FC} = 243.3\) Hz, 1C), 132.0 (s, 4C), 131.6 (s, 4C), 131.5 (s, 4C), 130.7 (dd, \(J_{PC} = 103.3, 42.2\) Hz, 4C), 128.3 (s, 8C), 113.9 (s, 2C), 110.4 (d, \(J_{FC} = 21.7\) Hz, 1C), 103.4 (t, \(J_{FC} = 24.9\) Hz, 1C), 57.6 (t, \(J_{PC} = 64.8\) Hz, 1C).

HRMS (ESI-TOF, [M + H]\(^+\)): calcd for C\(_{31}\)H\(_{26}\)F\(_2\)NO\(_2\)P\(_2\), 544.1403, found 544.1403.

((benzo[d][1,3]dioxol-5-ylamino)methylene)bis(diphenylphosphine oxide) (3q)

Following the general procedure, 3q was isolated as a white solid from 5-isothiocyanatobenzo[d][1,3]dioxole 1q (72 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 237–239 °C; Rf = 0.15 (DCM/MeOH = 30:1 v/v); 143 mg, 65% yield.

\(^1H\) NMR (CDCl\(_3\), 500 MHz): \(\delta\) 7.89–8.11 (m, 1H), 7.75–7.88 (m, 7H), 7.25–7.47 (m, 12H), 6.25–6.40 (m, 1H), 5.86–5.93 (m, 1H), 5.77–5.81 (m, 1H), 5.76 (s, 2H), 5.03–5.16 (m, 1H), 4.55 (s, 1H).

\(^13C\) NMR (125 MHz, CDCl\(_3\)): \(\delta\) 147.8 (s, 1C), 141.8 (s, 1C), 140.6 (s, 1C), 131.9 (s, 6C), 131.5 (s, 4C), 131.0 (s, 1C), 130.9 (s, 1C), 130.8 (dd, \(J = 105.7, 53.9\) Hz, 4C), 128.2 (s, 8C), 108.0 (s, 1C), 106.6 (s, 1C), 100.6 (s, 1C), 97.5 (s, 1C), 58.5 (t, \(J = 64.8\) Hz, 1C).

HRMS (ESI-TOF, [M + H]\(^+\)): calcd for C\(_{32}\)H\(_{28}\)NO\(_4\)P\(_2\), 552.1488, found 552.1488.
((Pyridin-2-ylamino)methylene)bis(diphenylphosphine oxide) (3r)

Following the general procedure, the reaction temperature was 90 °C and the reaction time was 1 h, 3r was isolated as a white solid from 2-isothiocyanatopyridine 1r (54 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). Mp 240–242 °C; R_f = 0.15 (DCM/MeOH = 30:1 v/v); 116 mg, 57% yield.

^1H NMR (CDCl₃, 500 MHz): δ 7.91–8.03 (m, 1H), 7.75–7.84 (m, 9H), 7.29–7.41 (m, 4H), 7.19–7.26 (m, 7H), 6.93–7.15 (m, 1H), 6.70–6.78 (m, 1H), 6.38–6.48 (m, 1H), 5.88–6.18 (m, 1H), 5.27–5.70 (m, 1H). ^13C NMR (125 MHz, CDCl₃): δ 155.3 (s, 1C), 146.7 (s, 2C), 136.8 (s, 2C), 131.6 (s, 10C), 131.0 (s, 1C), 130.8 (s, 1C), 128.1 (s, 2C), 127.9 (s, 2C), 113.9 (s, 4C), 109.7 (s, 4C), 50.0 (t, J = 69.3 Hz, 1C). HRMS (ESI-TOF, [M + Na]^+): calcd for C_{30}H_{26}N_{2}O_{2}NaP_{2}, 531.1367, found 531.1370.

((Phenylamino)methylene)bis(bis(4-fluorophenyl)phosphine oxide) (3s)

Following the general procedure, 3s was isolated as a white solid from phenyl isothiocyanate 1a (54 mg, 0.4 mmol) and bis(4-fluorophenyl)phosphine oxide 2b (190 mg, 0.8 mmol). Mp 183–185 °C; R_f = 0.30 (DCM/MeOH = 30:1 v/v); 162 mg, 70% yield.

^1H NMR (CDCl₃, 500 MHz): δ 7.74–7.90 (m, 8H), 6.88–7.15 (m, 10H), 6.62–6.69 (m, 1H), 6.27–6.30 (m, 2H), 4.99–5.08 (m, 1H), 4.53–4.59 (m, 1H). ^13C NMR (125 MHz, CDCl₃): δ 165.2 (dd, J_{PC} = 255.3, 10.0 Hz, 4C), 145.6 (s, 1C), 134.3 (s, 4C), 134.0 (s, 4C), 129.0 (s, 2C), 126.5 (dd, J_{PC} = 105.7, 35.9 Hz, 4C), 119.7 (s, 1C), 115.9 (s, 4C), 115.7 (s, 4C), 114.1 (s, 2C), 57.4 (t, J_{PC} = 66.3 Hz, 1C). HRMS (ESI-TOF, [M + H]^+): calcd for C_{31}H_{24}F_{4}NO_{2}P_{2}, 580.1213, found 580.1212.

((Phenylamino)methylene)bis(di-p-tolylphosphine oxide) (3t)

Following the general procedure, the reaction temperature was 90 °C and the reaction time was 2 h, 3t was isolated as a white solid from phenyl isothiocyanate 1a (54 mg, 0.4 mmol) and di-p-tolylphosphine oxide 2c (184 mg, 0.8 mmol). Mp 250–252 °C; R_f = 0.30 (DCM/MeOH = 30:1
v/v); 140 mg, 62% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.61–7.77 (m, 8H), 7.02–7.19 (m, 8H), 6.85–6.92 (m, 2H), 6.55–6.60 (m, 1H), 6.26–6.32 (m, 2H), 5.01–5.12 (m, 1H), 4.48–4.64 (m, 1H), 2.32 (d, $J = 27.5$ Hz, 12H).

13C NMR (CDCl$_3$): δ 146.3 (s, 1C), 142.1 (s, 4C), 131.8 (s, 4C), 131.6 (s, 4C), 128.8 (s, 8C), 128.6 (s, 2C), 127.9 (s, 1C), 127.6 (s, 1C), 118.6 (s, 1C), 114.1 (s, 4C), 57.3 (t, $J = 69.0$ Hz, 1C), 21.4 (s, 4C).

HRMS (ESI-TOF, [M + Na]$^+$): calcd for C$_{35}$H$_{35}$NO$_2$NaP$_2$, 586.2041, found 586.2039.

1(Di-o-tolylphosphoryl)(phenylamino)methyl)(-tolyl)(-tolyl)phosphine oxide (3u)

Following the general procedure, the reaction time was 0.5 h, 3u was prepared as a light yellow solid from phenyl isothiocyanate 1a (54 mg, 0.4 mmol) and di-o-tolylphosphine oxide 2d (184 mg, 0.8 mmol), the mixture was diluted and washed with petroleum ether/EtOAc (4: 1). The crude solid was purified by thin layer chromatograph on silica gel with DCM/MeOH = 30: 1 as eluent.

Mp 248–250 °C; R_f = 0.30 (DCM/MeOH = 30:1 v/v); 79 mg, 35% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.75–7.89 (m, 4H), 7.00–7.34 (m, 12H), 6.74–6.96 (m, 2H), 6.40–6.70 (m, 1H), 6.13–6.29 (m, 2H), 5.46–5.58 (m, 1H), 5.06–5.15 (m, 1H), 4.60–4.65 (m, 1H), 2.21 (d, $J = 32.2$ Hz, 24H).

13C NMR (CDCl$_3$): δ 144.9 (s, 1C), 143.1 (s, 2C), 142.4 (s, 2C), 133.1 (s, 2C), 132.2 (s, 2C), 131.8 (s, 4C), 131.7 (s, 4C), 130.4 (dd, $J = 98.7$, 70.8 Hz, 4C), 128.7 (s, 2C), 125.1 (s, 4C), 118.4 (s, 1C), 113.1 (s, 2C), 54.4 (t, $J = 65.0$ Hz, 1C), 21.8 (s, 2C), 21.4 (s, 2C).

HRMS (ESI-TOF, [M + Na]$^+$): calcd for C$_{35}$H$_{35}$NO$_2$NaP$_2$, 586.2041, found 586.2048.

1N1(phenylamino)methylene)bis(bis(3,5-dimethylphenyl)phosphine oxide) (3v)

Following the general procedure, the reaction time was 0.5 h, 3v was isolated as a white solid from phenyl isothiocyanate 1a (54 mg, 0.4 mmol) and bis(3,5-dimethylphenyl)phosphine oxide 2e (206 mg, 0.8 mmol). Mp 238–240 °C; R_f = 0.25 (DCM/MeOH = 30:1 v/v); 161 mg, 65% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.28–7.44 (m, 8H), 6.80–7.10 (m, 6H), 6.48–6.68 (m, 1H), 6.35–6.43 (m, 2H), 5.06–5.15 (m, 1H), 4.60–4.65 (m, 1H), 5.06–5.15 (m, 1H), 4.60–4.65 (m, 1H), 2.21 (d, $J = 32.2$ Hz, 24H).

13C NMR (CDCl$_3$): δ 146.4 (s, 1C), 137.7 (d, $J = 7.0$ Hz, 4C), 133.4 (s, 8C), 130.9 (dd, $J = 102.8$, 76.9 Hz, 4C), 129.2 (s, 4C), 129.0 (s, 4C), 128.5 (s, 2C), 128.5 (s, 2C), 118.6 (s, 1C), 114.0 (s, 2C), 57.2 (t, $J = 64.3$ Hz, 1C), 21.1 (s, 8C).

HRMS (ESI-TOF, [M + Na]$^+$): calcd for C$_{39}$H$_{43}$NO$_2$NaP$_2$, 642.2667, found
Procedure for the synthesis of thioamide 4

To a 15 mL sealed tube was charged with a mixture of phenyl isothiocyanate 1a (54 mg, 0.4 mmol) and diphenylphosphine oxide 2a (162 mg, 0.8 mmol). The reaction mixture was stirred at 60 °C for 0.5 h. After completion, the mixture was cooled to room temperature, added with CH$_3$CN (1.0 mL), and stirred for 10 min. The crude solid was then filtered and washed with CH$_3$CN. After dried in vacuum, the thioamide 4 was obtained as a yellow solid (117 mg, 87%).

1-(diphenylphosphoryl)-N-phenylmethanethioamide (4)4
Yellow solid; mp 160−162 °C (lit.4 mp 161−162 °C); R$_f$ = 0.25 (PE/EA = 4:1 v/v); 117 mg, 87% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 11.06−11.38 (m, 1H), 8.06−8.15 (m, 2H), 7.95−8.05 (m, 4H), 7.55−7.65 (m, 2H), 7.46−7.53 (m, 4H), 7.38−7.45 (m, 2H), 7.27−7.34 (m, 1H).

Procedure for the synthesis of bisphosphinoylaminomethanes 5

To a 15 mL sealed tube was charged with a mixture of phenyl isothiocyanate 1a (54 mg, 0.4 mmol) and diphenylphosphine oxide 2a (81 mg, 0.4 mmol). The reaction mixture was stirred at 60 °C for 1.0 h. Then, the P-reagent (0.4 mmol) was added to the reaction mixture and stirred at 90 °C or 110 °C. After completion, the mixture was cooled to room temperature, diluted with petroleum ether/EtOAc (4: 1). After filtration, the crude solid was then purified by thin layer chromatograph on silica gel with DCM/MeOH = 30:1 as eluent, the product 5 was afforded as a white solid.

((Di-p-tolylphosphoryl)(phenylamino)methyl)diphenylphosphine oxide (5a)

Following the general procedure, di-p-tolylphosphine oxide (92 mg, 0.4 mmol) was used in the second step, the reaction temperature was 90 °C and reaction time was 2 h. Mp 237−239 °C; R$_f$ = 0.25 (DCM/MeOH = 30:1 v/v); 118 mg, 55% yield.

1H NMR (CDCl$_3$, 500 MHz): δ 7.62−7.89 (m, 8H), 7.27−7.47 (m, 6H), 7.04−7.18 (m, 4H), 6.82−6.92 (m, 2H), 6.54−6.62 (m, 1H), 6.24−6.36 (m, 2H), 5.01−5.24 (m, 1H), 4.51−4.73 (m, 1H), 2.32 (d, J = 25.6 Hz, 6H). 13C NMR (125 MHz, CDCl$_3$): δ 146.1 (s, 1C), 142.3 (s, 1C), 142.2 (s,
Following the general procedure, bis(3,5-dimethylphenyl)phosphine oxide (103 mg, 0.4 mmol) was used in the second step, the reaction temperature was 110 °C and the reaction time was 0.5 h. Mp 232–234 °C; R_f = 0.25 (DCM/MeOH = 30:1 v/v); 160 mg, 71% yield.

^1^H NMR (500 MHz, CDCl_3): δ 7.90–8.00 (m, 2H), 7.78–7.85 (m, 2H), 7.26–7.41 (m, 10H), 7.00–7.06 (m, 1H), 6.89–6.99 (m, 3H), 6.55–6.64 (m, 1H), 6.33–6.40 (m, 2H), 5.09–5.18 (m, 1H), 4.58–4.64 (m, 1H), 2.21 (d, J = 33.0 Hz, 12H).

^13^C NMR (125 MHz, CDCl_3): δ 146.0 (s, 1C), 137.7 (s, 2C), 137.6 (s, 2C), 133.8 (s, 2C), 132.7 (s, 2C), 132.0 (s, 2C), 131.7 (s, 2C), 130.7 (dd, J = 97.7, 40.9 Hz, 2C), 129.2 (dd, J = 124.7, 19.0 Hz, 2C), 129.5 (s, 2C), 129.0 (s, 2C), 128.5 (s, 4C), 128.0 (s, 2C), 118.5 (s, 1C), 114.2 (s, 2C), 56.7 (t, J = 64.3 Hz, 1C), 21.2 (s, 2C), 21.1 (s, 2C).

HRMS (ESI-TOF, [M + Na]^+): calcd for C_{33}H_{31}NO_2NaP_2, 558.1728, found 558.1730.

Dimethyl ((diphenylphosphoryl)(phenylamino)methyl)phosphonate (5c)

Following the general procedure, dimethyl phosphonate 2f (44 mg, 0.4 mmol) was used in the second step, the reaction temperature was 110 °C and reaction time was 6.5 h. Mp 198–200 °C; R_f = 0.20 (DCM/MeOH = 30:1 v/v); 75 mg, 45% yield.

^1^H NMR (CDCl_3, 500 MHz): δ 7.73–8.05 (m, 4H), 7.36–7.59 (m, 6H), 7.07–7.17 (m, 2H), 6.70–6.77 (m, 1H), 6.56–6.60 (m, 2H), 4.72–4.81 (m, 1H), 4.30–4.35 (m, 1H), 3.53–3.71 (m, 6H).

^13^C NMR (125 MHz, CDCl_3): δ 145.7 (s, 1C), 132.3 (s, 1C), 132.2 (s, 1C), 131.6 (s, 2C), 131.5 (s, 2C), 130.6 (dd, J = 99.7, 29.9 Hz, 2C), 129.2 (s, 2C), 128.5 (s, 2C), 128.4 (s, 2C), 119.1 (s, 1C), 113.7 (s, 2C), 53.5 (t, J = 33.4 Hz, 1C), 52.5 (s, 1C), 52.0 (s, 1C). HRMS (ESI-TOF, [M + Na]^+): calcd for C_{21}H_{23}NO_2NaP_2, 438.1000, found 438.1003.

Ethyl((diphenylphosphoryl)(phenylamino)methyl)(phenyl)phosphinate (5d)

Ethyl((diphenylphosphoryl)(phenylamino)methyl)(phenyl)phosphinate (5d)
Following the general procedure, ethyl phenylphosphinate 2g (68 mg, 0.4 mmol) was used in the second step, the reaction temperature was 90 °C and reaction time was 0.5 h. Mp 206–208 °C; R_f = 0.35 (DCM/MeOH = 30:1 v/v); 99 mg, 52% yield.

^1^H NMR (500 MHz, CDCl₃): δ 7.67–8.00 (m, 6H), 7.29–7.58 (m, 9H), 6.83–7.06 (m, 2H), 6.22–6.70 (m, 3H), 4.76–4.93 (m, 1H), 4.23–4.48 (m, 1H), 3.77–4.01 (m, 2H), 2.04–2.19 (m, 3H).

^1^C NMR (125 MHz, CDCl₃): δ 146.0 (s, 1C), 132.8 (d, J = 9.7 Hz, 1C), 132.5 (s, 2C), 131.9 (s, 1C), 131.8 (s, 1C), 131.6 (d, J = 8.6 Hz, 1C), 131.4 (d, J = 8.9 Hz, 1C), 131.2 (d, J = 8.7 Hz, 1C), 130.0 (dd, J = 131.6, 54.9 Hz, 2C), 128.9 (s, 1C), 128.3 (s, 9C), 118.8 (d, J = 10.0 Hz, 1C), 113.8 (d, J = 14.0 Hz, 1C), 61.8 (s, 1C), 55.3 (t, J = 54.4 Hz, 1C), 29.7 (s, 1C). HRMS (ESI-TOF, [M + Na]^+): calcd for C_{27}H_{27}NO_3NaP_2, 498.1364, found 498.1370.

References

Profile of the reaction of 1b with 2a

![Diagram of the reaction of 1b with 2a]

Figure S2. Profile of the reaction of 1b with 2a under solvent-free conditions.
Hammett correlation study

A mixture of the equimolar amount of substituted thioamide 4 (0.1 mmol) and diphenylphosphine oxide (0.1 mmol) was stirred at 110 °C for 20 min. The reaction mixture was cooled to room temperature. The resulting mixture was analyzed by 1H NMR for determination of yield using 1, 3, 5-trimethoxybenzene (16.8 mg, 0.1 mmol) as the internal standard. The values were listed below:

![Graph showing Hammett correlation study.](image)

<table>
<thead>
<tr>
<th></th>
<th>σ</th>
<th>KX/KH</th>
<th>lg(KX/KH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-OMe</td>
<td>-0.268</td>
<td>0.400</td>
<td>-0.398</td>
</tr>
<tr>
<td>p-Me</td>
<td>-0.17</td>
<td>2.186</td>
<td>0.340</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>p-CF3</td>
<td>0.54</td>
<td>4.986</td>
<td>0.698</td>
</tr>
</tbody>
</table>

Figure S3. Hammett correlation study.

Testing the generation of H₂S with lead acetate strip

To prove H₂S generation, lead acetate test strip was pasted on the Teflon cover of the sealed tube before reaction. Subsequently, the reaction mixture of isothiocyanate and diphenylphosphine oxide was heated to 110 °C. With the reaction proceeding, the lead acetate strip gradually turned to black. After 3 h, the whole paper became totally dark black which confirmed the elimination of
H₂S.

EDS spectrum for the detection of elemental sulfur

Procedure for the Separation of Elemental Sulfur. A 5 mmol (based on 1a) scale reaction was conducted under standard conditions. After filtration, the filtrate was purified by silica gel column chromatography, the resultant mixture was dissolved in methanol, then the solid were precipitated (52 mg) and used for EDS analysis.

![Figure S5. The EDS spectrum and data analysis.](image)

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C K</td>
<td>73.71</td>
<td>85.22</td>
</tr>
<tr>
<td>O K</td>
<td>7.43</td>
<td>6.45</td>
</tr>
<tr>
<td>Si K</td>
<td>0.18</td>
<td>0.09</td>
</tr>
<tr>
<td>P K</td>
<td>10.04</td>
<td>4.50</td>
</tr>
<tr>
<td>S K</td>
<td>8.65</td>
<td>3.75</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
NAME SUN-161111
EXPNO 1
PROCNO 1
Date_ 20161111
Time 10.45
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 16384
SOLVENT CDC13
NS 16
DS 1
SWH 10000.000 Hz
FIDRES 0.610352 Hz
AQ 0.8193000 sec
RG 287
DW 50.000 usec
DE 6.00 usec
TE 673.2 K
D1 2.00000000 sec
TD0 1

-------- CHANNEL f1 --------
NUC1 1H
P1 13.00 usec
PL1 2.00 dB
SF01 500.0325010 MHz
SI 16384
SF 500.0300096 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 2.00
NAME SUN-181223
EXPPRO 2
PROCNO 1
Date 20161228
Time 21:50
INST spec
PROB 5 mm PABBO BB-
PD zgpg30
SOLVENT CDCl3
NS 499
DS 2
SWH 3267.738 Hz
FIDRES 0.498653 Hz
AQ 1.0027661 sec
RG 4100
DW 15.300 usec
DE 6.000 usec
TE 673.2 K
D1 2.000000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 10

****** CHANNEL f1 ******
NUC1 13C
P1 1.200 usec
PL1 3.00 dB
SF1 125.7464750 MHz

****** CHANNEL f2 ******
CPDPRG2 waltz16
NUC2 1H
PCPD2 80.00 usec
PL2 2.00 dB
PLP2 17.70 dB
PL23 17.70 dB
SFO2 500.035500 MHz
Si 32766
SF 125.7326462 MHz
WDW EM
SSB 0
LB 3.00 Hz
GB 0
PC 1.00
NAME SUN-W-3(2)
EXPNO 1
PROCNO 1
Date_ 20170417
Time 11.10
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg
TD 16384
SOLVENT CDC13
NS 32
DS 1
SWH 10000.000 Hz
FIDRES 0.610352 Hz
AQ 0.8193000 sec
RG 128
DW 50.000 usec
DE 8.00 usec
TE 673.2 K
D1 1.0000000 sec
TDO 1

---------- CHANNEL f1 ----------
NUC1 1H
P1 13.00 usec
PL1 2.00 dB
SFO1 500.0335000 MHz
SI 16384
SF 500.0300136 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 0.50
NAME SUN-161121
EXPNO 1
PROCNO 1
Date_ 20161121
Time_ 17.31
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 16384
SOLVENT CDC13
NS 32
DS 1
SWH 10000.000 Hz
FIDRES 0.610352 Hz
AQ 0.8193000 sec
RG 575
DW 50.000 usec
DE 6.00 usec
TE 673.2 K
D1 1.00000000 sec
TD0 1

CHANNEL f1

NUC1 1H
P1 13.00 usec
PL1 2.00 dB
SF01 500.0335010 MHz
SI 16384
SF 500.0300103 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00
NAME SUN-170109
EXPNO 1
PROCNO 1
Date_ 20170110
Time_ 10:14
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 16384
SOLVENT Cbc13
NS 16
DS 1
SWH 10000.000 Hz
FIDRES 0.610352 Hz
AQ 0.8193000 sec
RG 144
DW 50.000 usec
DE 6.00 usec
TE 673.2 K
D1 1.00000000 sec
TDO 1

-------- CHANNEL f1 --------
NUC1 1H
P1 13.00 usec
PL1 2.00 dB
SFQ1 500.0335010 MHz
SI 16384
SF 500.0300091 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 2.00
NAME SUN-170321
EXPNO 1
PROCNO 1
Date 20170320
Time 16.01
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG 2g
TD 16384
SOLVENT CDC13
NS 8
DS 2
SWH 10000.000 Hz
FIDRES 0.610352 Hz
AQ 0.8193000 sec
RG 90.5
DW 50.000 usec
DE 8.00 usec
TE 673.2 K
D1 2.00000000 sec
TDO 1

---------- CHANNEL f1 ----------
NUC1 1H
P1 13.00 usec
PL1 2.00 dB
SFO1 500.0335000 MHz
SI 16384
SF 500.0300052 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00
NAME SUN-170227
EXPNO 1
PROCNO 1
Date 20170327
Time 14.28
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPRES
TD 2g
SOLVENT CDC13
NS 8
DS 2
SWH 10000.000 Hz
FIDRES 0.610352 Hz
AQ 0.8193000 sec
RG 181
DW 50.000 usec
DE 8.00 usec
TE 673.2 K
D1 2.00000000 sec
TD0 1

---------- CHANNEL f1 ----------
NUC1 1H
P1 13.00 usec
PL1 2.00 dB
SFO1 500.0335000 MHz
SI 16384
SF 500.0300052 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00
NAME SUN-P-ME
EXPN0 1
PROCNO 1
Date_ 20170419
Time 17.39
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg
TD 16384
SOLVENT CDC13
NS 8
DS 2
SWH 10000.000 Hz
FIDRES 0.610352 Hz
AQ 0.8193000 sec
RG 256
DW 50.000 usec
DE 8.000 usec
TE 673.2 K
D1 2.00000000 sec
TDO 1

---------- CHANNEL f1 ----------
NUC1 1H
P1 13.00 usec
PL1 2.00 dB
SFO1 500.035000 MHz
SI 16384
SF 500.0300013 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00