Supporting Information

Paired electrochemical conversion of nitroarenes to sulfonamides,

diarylsulfones and bis(arylsulfonyl)aminophenols

Banafsheh Mokhtari,^a Davood Nematollahi,^{a*} Hamid Salehzadeh^b

^aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, Zip Code: 65178-38683. E-mail:

nemat@basu.ac.ir, Fax: +98-813-8257407

^bFaculty of Chemistry, kharazmi University, Tehran, Iran, 15719-14911

Contents

1	Characteristics of products	Page 5
2	Cyclic voltammograms of 1-chloro-2-nitrobenzene at different pHs	Page 11
3	Cyclic voltammograms of <i>p</i> -nitroanilie at different pHs	Page 12
4	Cyclic voltammograms of <i>p</i> -nitrophenol at different pHs	Page 13
5	Cyclic voltammograms of nitrobenzene	Page 14
6	Cyclic voltammograms of nitrobenzene in the absence and presence of BSA	Page 15
7	Cyclic voltammograms of nitrobenzene in the presence of BSA	Page 16
8	Cyclic voltammograms of <i>p</i> -nitroaniline	Page 17
9	Cyclic voltammograms of <i>p</i> -nitroaniline in the presence of BSA	Page 18
10	Cyclic voltammograms of <i>p</i> -nitroaniline in the absence and presence of BSA	Page 19
11	Cyclic voltammograms of <i>p</i> -nitrophenol	Page 20
12	Cyclic voltammograms of <i>p</i> -nitrophenol in the presence of BSA	Page 21
13	Cyclic voltammograms of <i>p</i> -nitrophenol in the absence and presence of BSA	Page 22
14	IR spectrum of 1a	Page 23
15	¹ H NMR Spectrum of 1a	Page 24
16	Expanded ¹ H NMR spectrum of 1a	Page 25
17	¹³ C NMR spectrum of 1a	Page 26
18	MS spectrum of 1a	Page 27
19	IR spectrum of 1b	Page 28
20	¹ H NMR Spectrum of 1b	Page 29
21	Expanded ¹ H NMR spectrum of 1b	Page 30
22	¹³ C NMR spectrum of 1b	Page 31
23	MS spectrum of 1b	Page 32
24	IR spectrum of 1c	Page 33
25	¹ H NMR Spectrum of 1c	Page 34
26	Expanded ¹ H NMR spectrum of 1c	Page 35
27	¹³ C NMR spectrum of 1c	Page 36
28	MS spectrum of 1c	Page 37
29	IR spectrum of 2a	Page 38
30	¹ H NMR Spectrum of 2a	Page 39
31	Expanded ¹ H NMR spectrum of 2a	Page 40
32	¹³ C NMR spectrum of 2a	Page 41
33	MS spectrum of 2a	Page 42
34	IR spectrum of 2b	Page 43
35	¹ H NMR Spectrum of 2b	Page 44

36	Expanded ¹ H NMR spectrum of 2b	Page 45
37	¹³ C NMR spectrum of 2b	Page 46
38	MS spectrum of 2b	Page 47
39	IR spectrum of 2c	Page 48
40	¹ H NMR Spectrum of 2c	Page 49
41	Expanded ¹ H NMR spectrum of 2c	Page 50
42	¹³ C NMR spectrum of 2c	Page 51
43	MS spectrum of 2c	Page 52
44	IR spectrum of 3a	Page 53
45	¹ H NMR Spectrum of 3a	Page 54
46	Expanded ¹³ C NMR spectrum of 3a	Page 55
47	¹³ C NMR spectrum of 3a	Page 56
48	Expanded ¹³ C NMR spectrum of 3a	Page 57
49	MS spectrum of 3a	Page 58
50	IR spectrum of 3b	Page 59
51	¹ H NMR Spectrum of 3b	Page 60
52	Expanded ¹³ C NMR spectrum of 3b	Page 61
53	¹³ C NMR spectrum of 3b	Page 62
54	Expanded ¹³ C NMR spectrum of 3b	Page 63
55	MS spectrum of 3b	Page 64
56	IR spectrum of 3c	Page 65
57	¹ H NMR Spectrum of 3c	Page 66
58	Expanded ¹ H NMR spectrum of 3c	Page 67
59	¹³ C NMR spectrum of 3c	Page 68
60	Expanded ¹³ C NMR spectrum of 3c	Page 69
61	MS spectrum of 3c	Page 70
62	IR spectrum of 4a	Page 71
63	¹ H NMR Spectrum of 4a	Page 72
64	¹³ C NMR spectrum of 4a	Page 73
65	MS spectrum of 4a	Page 74
66	IR spectrum of 4b	Page 75
67	¹ H NMR Spectrum of 4b	Page 76
68	¹³ C NMR spectrum of 4b	Page 77
69	MS spectrum of 4b	Page 78
70	IR spectrum of 4c	Page 79
71	¹ H NMR Spectrum of 4c	Page 80
72	Expanded ¹ H NMR spectrum of 4c	Page 81

73	Expanded ¹ H NMR spectrum of 4c (with D ₂ O)	Page 82
74	¹³ C NMR spectrum of 4c	Page 83
75	MS spectrum of 4c	Page 84

Characteristics of products

Compound 1a (C₁₂H₁₁NO₃S)

Isolated yield: 70%. Mp=133-134 °C. IR (KBr, cm⁻¹): 3355, 1595, 1488, 1447, 1346, 1176, 765, 684, 564.¹H NMR, δ ppm (500 MHz, acetone d_6): 7.17 (d, J = 7.5 Hz, 2H), 7.23-7.30 (m, 3H), 7.53 (m, 4H), 7.66 (d, J = 3.1 Hz, 1H), 10.15 (s, 1H, OH). ¹³C NMR, δ ppm (125 MHz, acetone d_6): 123.1, 127.3, 128.5, 128.8, 129.9, 133.5, 134.2, 143.3. MS (EI) m/z (%): 51 (42), 77 (100), 141 (47), 233 (9), 248 [78, (M⁺-1)].

Compound 1b (C₁₃H₁₃NO₃S)

Isolated yield: 75%. Mp=139-141°C. IR (KBr, cm⁻¹): 3372, 2815, 1565, 1487, 1353, 1161, 566, 543. ¹H NMR, δ ppm (500 MHz, acetone- d_6): 2.42 (s, 3H, CH₃), 7.18 (d, J = 7.6, 2H), 7.22-7.30 (m, 3H), 7.32 (d, J = 8.0, 2H), 7.40 (d, J = 8.1, 2H), 10.06 (s, 1H, OH). ¹³C NMR, δ ppm (125 MHz, acetone- d_6): 21.1, 123.1, 127.2, 128.4, 129.1, 130.0, 130.7, 143.4, 145.1. MS (EI) m/z (%): 65 (3), 91 (100), 155 (77), 262 [75, (M⁺-1)].

Compound 1c (C₁₂H₁₀CINO₃S)

Isolated yield: 78%. Mp=128-129°C. IR (KBr, cm⁻¹): 3359, 1577, 1487, 1350, 1177, 761, 567. ¹H NMR, δ ppm (500 MHz, acetone- d_6): 6.88 (d, J = 7.9 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 8.1 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.6 Hz, 2H), 7.76 (d, J = 8.6 Hz, 2H) 10.42 (s, H, OH). ¹³C NMR, δ ppm (125 MHz, acetone- d_6): 123.1, 127.6, 128.7, 129.1, 131.6, 132.1, 140.2, 143.0. MS (EI) m/z (%): 52 (20), 75 (34), 111 (95), 175 (97), 282 [100, (M⁺-1)].

Compound 2a (C₁₂H₁₀CINO₃S)

Isolated yield: 73%. Mp=153-155°C. IR (KBr, cm⁻¹): 3359, 1577, 1487, 1350, 1177, 761, 567. ¹H NMR, δ ppm (500 MHz acetone- d_6): 6.81 (d, J = 7.9 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.65 (t, J = 7.6, 2H), 7.77-7.82 (m, 3H), 10.31 (s, 1H, OH). ¹³C NMR, δ ppm (125 MHz, acetone- d_6): 126.9, 127.4, 129.1, 130.0, 130.4, 130.5, 133.0 134.2, 134.5 140.4. MS (EI) m/z (%): 51 (92), 77 (100), 142 (95), 266 (21), 283 [25, (M⁺)].

Compound 2b (C₁₃H₁₂CINO₃S)

Isolated yield: 75%. Mp=139-140°C. IR (KBr, cm⁻¹): 3332, 2837, 1595, 1472, 1443, 1344, 1167, 765, 678, 576. ¹H NMR, δ ppm (500 MHz, acetone- d_6): 2.44 (s, 3H, CH₃), 6.76 (d, J = 7.8 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.29 (t, J = 7.1 Hz, 1H), 7.41 (d, J = 7.5 Hz, 2H), 7.46 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 7.6 Hz, 2H), 10.26 (s, 1H, OH). ¹³C NMR, δ ppm (125 MHz, acetone- d_6): 21.1 CH₃, 126.8, 127.4, 129.6, 130.0, 130.4, 130.5, 131.2, 133.0, 140.6, 145.5. MS (EI) m/z (%): 51 (36), 65 (71), 91 (100), 114 (54), 142 (78), 281 (11), 297 [22, (M⁺)].

Compound 2c (C₁₂H₉Cl₂NO₃S)

Isolated yield: 72%. Mp=143-145°C. IR (KBr, cm⁻¹): 3377, 1578, 1474, 1396, 1350, 1169, 769, 661, 621, 574. ¹H NMR, δ ppm (500 MHz, acetone- d_6): 6.88 (d, J = 7.9 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.1 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.6 Hz, 2H), 7.77 (d, J = 8.6 Hz , 2H), 10.41 (s, 1H, OH). ¹³C NMR, δ ppm (125 MHz, acetone- d_6): 126.8, 127.6, 129.4, 130.2, 130.5, 132.1, 132.9, 133.1, 140.1, 140.MS (EI) m/z (%): 50 (11), 75 (41), 111 (100), 159 (20), 175 (95), 316 [39, (M⁺-1)].

Compound 3a (C₁₈H₁₆N₂O₄S₂)

Isolated yield: 60%. Mp = 170-172 °C. IR (KBr, cm⁻¹): 3460, 3362, 3210, 1629, 1491, 1288, 1142, 688, 591. ¹H NMR, *δ*ppm (400 MHz, DMSO-*d*₆): 4.22 (s, 1H, NH), 5.70 (s, 1H, NH), 6.52-6.71 (m,

3H), 7.19 (s, 1H), 7.35 (s, 1H), 7.70 (s, 6H), 7.93-7.95 (d, *J* = 6.8 Hz, 3H). ¹³C NMR, δppm (125 MHz, DMSO-*d*₆): 121.0, 122.0, 122.6, 124.1, 124.6, 126.1, 126.6, 126.7, 128.8, 129.1, 129.3, 129.5, 133.9, 140.2. MS (EI) *m/z* (%): 77 (100), 125 (26), 182 (71), 247 (62), 388 [64, (M⁺)].

Compound 3b $(C_{20}H_{20}N_2O_4S_2)$

Isolated yield: 72%. Mp =158-159°C. IR (KBr, cm⁻¹): 3376, 2962, 2925, 2853, 1599, 1508, 1446, 1305, 1142, 804, 724, 688, 588. ¹H NMR, δ ppm (400 MHz, DMSO-*d*₆ and acetone-*d*₆): 2.38 (s, 6H, CH₃), 4.20 (s, 1H, NH), 5.65 (s, 1H, NH), 6.62-6.64 (d, *J* = 8.4 Hz, 1H), 6.78, (t, *J* = 8.4 Hz, 3H), 7.10-7.13 (d, *J* = 9.6 Hz, 2H), 7.36-7.38 (d, *J* = 7.4 Hz, 3H), 7.83-7.85 (d, *J* = 8 Hz, 3H). ¹³C NMR, δ ppm (100 MHz, acetone-*d*₆): 20.5 (CH₃), 113.2, 114.3, 118.1, 118.9, 119.4, 123.1, 126.8, 127.0, 127.7, 128.7, 129.2, 129.5, 129.6, 131.1. MS (EI) *m/z* (%): 72 (100), 149 (37), 222 (35), 279 (5), 346 (7), 401 (3), 414 [23, (M⁺-2)].

Compound 3c ($C_{18}H_{14}Cl_2N_2O_4S_2$)

Isolated yield: 77%. Mp =156-158°C. IR (KBr, cm⁻¹): 3366, 3233, 1625, 1599, 1509, 1303, 1140, 722, 690. ¹H NMR, δ ppm (400 MHz, acetone- d_6): 7.29 (m, J = 7.6 Hz, 1H), 7.35-7.40 (m, 3H), 7.45-7.52 (m, 4H), 7.56-7.59 (d, J = 8.0 Hz, 2H), 7.64-7.66 (d, J = 8.0 Hz, 2H), 7.78 (t, J = 7.6, 2H). ¹³C NMR, δ ppm (100 MHz, acetone- d_6): 118.7, 124.2, 126.1, 128.3, 128.8, 129.2, 130.6, 131.1, 131.8,

132.6, 133.9, 136.2, 142.1, 149.5. MS (EI) *m/z* (%): 50 (55), 72 (100), 105 (53), 182 (64), 250 (20), 312 (16), 383 (17), 455 [55, (M⁺-1)].

Compound 4a (C₁₈H₁₅NO₅S₂)

Isolated yield: 70%. Mp=158-160°C. IR (KBr, cm⁻¹): 3344, 3274, 1611, 1512, 1447, 1280, 1141, 731, 602, 557. ¹H NMR, *δ* ppm (400 MHz, acetone-*d*₆): 6.72 (d, *J* = 8.4 Hz, 1H), 6.85-6.94 (m, 2H), 7.16-7.21 (m, 1H), 7.57-7.67 (m, 7H), 7.95-8.0 (m, 4H). ¹³C NMR, *δ* ppm (100 MHz, acetone-*d*₆): 112.8, 115.9, 117.9, 118.4, 118.8, 119.4, 122.6, 127.3, 127.6, 127.7, 129.0, 129.1, 133.2, 133.3. MS (EI) *m/z* (%): 79 (100), 158 (98), 202 (76), 249 (36), 389 [36, (M⁺)].

Compound 4b (C₂₀H₁₉NO₅S₂)

Isolated yield: 70%. Mp=158-159°C. IR (KBr, cm⁻¹): 3352, 3292, 1617, 1596, 1451, 1298, 1146, 710, 657, 521. ¹H NMR, δ ppm (400 MHz, acetone- d_6): 2.39 (s, 6H, CH₃), 6.71 (d, J = 8.4 Hz, 1H), 6.84-6.87 (m, 1H), 6.91 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 2.8 Hz, 1H), 7.40 (t, J = 7.2, Hz, 4H), 7.49 (s, 1H), 7.82-7.89 (m, 4H). ¹³C NMR, δ ppm (100 MHz, acetone- d_6): 21.4, 21.5, 113.6, 118.1, 119.3, 119.7, 120.1, 120.4, 123.4. 128.2, 128.4, 128.6, 128.7, 130.4, 130.5, 130.7. MS (EI) m/z (%): 52.2 (36), 107 (100), 199 (16), 263 (14), 417 [36, (M⁺)].

Compound 4c (C₁₈H₁₃Cl₂NO₅S₂)

Isolated yield: 72%. Mp=157-159°C. IR (KBr, cm⁻¹): 3362, 3311, 3216, 1634, 1611, 1582, 1493, 1289, 1139, 731, 685, 605. ¹H NMR, δ ppm (400 MHz, DMSO-*d*₆): 6.74 (s, 1H, OH, disappeared after addition of D₂O), 6.87-6.93 (m, 3H, aryl H and NH, disappeared after addition of D₂O), 7.22 (d, *J* = 10.8 Hz, 2H), 7.62 (s, 4H, aryl H and NH, disappeared after addition of D₂O), 7.97-7.99 (m, 3H). ¹³C NMR, δ ppm (125 MHz, DMSO-*d*₆): 113.7, 115.0, 119.1, 119.6, 120.3, 123.5, 128.6, 130.0, 130.4, 130.7, 142.0, 142.8, 145.1, 147.5. MS (EI) *m/z* (%): 79 (86), 183 (11), 283 (100), 457 [23, (M⁺)].

Cyclic voltammograms of 1-chloro-2-nitrobenzene at different pHs

Fig. S1. Cyclic voltammograms of 1.0 mM1 -chloro-2-nitrobenzene at glassy carbon electrode, in water/ethanol (80/20) mixture with various pH values and same ionic strength. pHs from (a) to (e) are: 1.0, 2.5, 3.5, 4.5, 5.0 and 5.7. Working electrode: glassy carbon. Scan rate: 100 mV/s. Inset: The potential-pH diagram of phenylhydroxylamine/nitrosobenzene (redox couple A₁/C₁). $t = 25 \pm 1$ °C.

Cyclic voltammograms of *p*-nitroaniline at different pHs

Fig. S2. Cyclic voltammograms of 1.0 mM *p*-nitroaniline at glassy carbon electrode, in water/eth anol (80/20) mixture with various pH values and same ionic strength. pHs from (a) to (d) are: 1.0 , 3.35, 5.2 and 6.25. Working electrode: glassy carbon. Scan rate: 100 mV/s. Inset: The potential -pH diagram of phenylhydroxylamine/nitrosobenzene (redox couple A_1/C_1). $t = 25 \pm 1$ °C.

Cyclic voltammograms of *p*-nitrophenol at different pHs

Fig. S3. Cyclic voltammograms of 1.0 mM *p*-nitrophenol at glassy carbon electrode, in water/eth anol (80/20) mixture with various pH values and same ionic strength. pHs from (a) to (e) are: 1.2 , 2.1, 2.9, 5.0 and 6.8. Working electrode: glassy carbon. Scan rate: 100 mV/s. Inset: The potenti al-pH diagram of phenylhydroxylamine/nitrosobenzene (redox couple A_1/C_1) and *p*-aminopheno l/p-aminoquinone (redox couple A_2/C_2). $t = 25 \pm 1$ °C.

Cyclic voltammograms of nitrobenzene

Fig. S4. Cyclic voltammograms of 1.0 mM nitrobenzene at glassy carbon electrode, in aqueous s olution containing phosphate buffer (c = 0.2 M, pH = 3.5) at different scan rates. Scan rate from (a) to (d) are: 10, 25, 50 and 100 mV/s respectively. $t = 25 \pm 1$ °C.

Cyclic voltammograms of nitrobenzene in the absence and presence of benzenesulfinic acid

Fig. S5. Cyclic voltammograms of 1.0 mM nitrobenzene. Part I: in the absence and part II, in the presence of benzenesulfinic acid (1.0 mM) at glassy carbon electrode, in aqueous solution conta ining phosphate buffer (c = 0.2 M, pH = 3.5). Scan rate: 25. $t = 25 \pm 1$ °C.

Cyclic voltammograms of nitrobenzene in the presence of benzenesulfinic acid

Fig. S6. Cyclic voltammograms of 1.0 mM nitrobenzene in the presence of benzenesulfinic acid (1.0 mM) at glassy carbon electrode, in aqueous solution containing phosphate buffer (c = 0.2 M, pH = 3.5) at different scan rates. Scan rate from (a) to (d) are: 10, 25, 50 and 100 mV/s respectiv ely. $t = 25 \pm 1$ °C.

Cyclic voltammograms of *p*-nitroaniline

Fig. S7. Cyclic voltammograms of 1.0 mM *p*-nitroaniline in the presence of benzenesulfinic acid (1.0 mM) at glassy carbon electrode, in aqueous solution containing phosphate buffer (c = 0.2 M, pH = 3.5) at different scan rates. Scan rate from (a) to (g) are: 10, 25, 50, 100, 250, 500 and 100 0 mV/s respectively. $t = 25 \pm 1$ °C.

Cyclic voltammograms of *p*-nitroaniline in the presence of benzenesulfinic acid

Fig. S8. Cyclic voltammograms of 1.0 mM *p*-nitroaniline in the presence of benzenesulfinic acid (1.0 mM) at glassy carbon electrode, in aqueous solution containing phosphate buffer (c = 0.2 M, pH = 3.5) at different scan rates. Scan rate from (a) to (d) are: 10, 25, 50 and 100 mV/s respectiv ely. $t = 25 \pm 1$ °C.

Cyclic voltammograms of *p*-nitroaniline in the absence and presence of benzenesulfinic acid

Fig. S9. Cyclic voltammograms of 1.0 mM *p*-nitroaniline. Part I: in the presence and part II, in the absence of benzenesulfinic acid (1.0 mM) at glassy carbon electrode, in aqueous solution conta ining phosphate buffer (c = 0.2 M, pH = 3.5). Scan rate: 100 mV/s. $t = 25 \pm 1$ °C.

Cyclic voltammograms of *p*-nitrophenol

Fig. S10. Cyclic voltammograms of 1.0 mM *p*-nitrophenol at glassy carbon electrode, in aqueous solution containing phosphate buffer (c = 0.2 M, pH = 3.5) at different scan rates. Scan rate fro m (a) to (f) are: 10, 50, 100, 250, 500 and 1000 mV/s respectively. $t = 25 \pm 1$ °C.

Cyclic voltammograms of *p*-nitrophenol in the presence of benzenesulfinic acid

Fig. S11. Cyclic voltammograms of 1.0 mM *p*-nitrophenol in the presence of benzenesulfinic acid (**BSA**) (1.0 mM) at glassy carbon electrode, in aqueous solution containing phosphate buffer (c = 0.2 M, pH = 3.5) at different scan rates. Scan rate from (a) to (d) are: 10, 25, 50 and 100 mV/s r espectively. $t = 25 \pm 1$ °C. Inset: Cyclic voltammogram of 1.0 mM **BSA** in the same conditions at1 00 mV/s.

Cyclic voltammograms of *p*-nitrophenol in the absence and presence of BSA

Fig. S12. Cyclic voltammograms of 1.0 mM *p*-nitrophenol. Part I: in the absence and part II, in th e presence of benzenesulfinic acid (1.0 mM) at glassy carbon electrode, in aqueous solution con taining phosphate buffer (c = 0.2 M, pH = 3.5). Scan rate: 50 mV/s. $t = 25 \pm 1$ °C.

IR spectrum of 1a

¹H NMR spectrum of 1a

Expanded ¹H NMR spectrum of 1a

¹³C NMR spectrum of 1a

MS spectrum of 1a

IR spectrum of 1b

¹H NMR spectra of 1b

Expanded ¹H NMR spectrum of 1b

¹³C NMR spectrum of 1b

MS spectrum of 1b

IR spectrum of 1c

¹H NMR spectrum of 1c

Expanded ¹H NMR spectrum of 1c

¹³C NMR spectrum of 1c

MS spectrum of 1c

IR spectrum of 2a

Expanded ¹H NMR spectrum of 2a

¹³C NMR spectrum of 2a

MS spectrum of 2a

IR spectrum of 2b

¹H NMR spectrum of 2b

Expanded ¹H NMR spectrum of 2b

¹³C NMR spectrum of 2b

46

MS spectrum of 2b

IR spectrum of 2c

¹H NMR spectrum of 2c

Expanded ¹H NMR spectrum of 2c

¹³C NMR spectrum of 2c

MS spectrum of 2c

IR spectrum of 3a

¹H NMR spectrum of 3a

Expanded ¹H NMR spectrum of 3a

¹³C NMR spectrum of 3a

56

Expanded ¹³C NMR spectrum of 3a

MS spectrum of 3a

IR spectrum of 3b

¹H NMR spectrum of 3b

Expanded ¹H NMR spectrum of 3b

¹³C NMR spectrum of 3b

Expanded ¹³C NMR spectrum of 3b

MS spectrum of 3b

IR spectrum of 3c

¹H NMR spectrum of 3c

Expanded ¹H NMR spectrum of 3c

¹³C NMR spectrum of 3c

Expanded ¹³C NMR spectrum of 3c

MS spectrum of 3c

IR spectrum of 4a

¹H NMR spectrum of 4a

¹³C NMR spectrum of 4a

MS spectrum of 4a

IR spectrum of 4b

¹H NMR spectrum of 4b

¹³C NMR spectrum of 4b

MS spectrum of 4b

IR spectrum of 4c

¹H NMR spectrum of 4c

Expanded ¹H NMR spectrum of 4c

Expanded ¹H NMR spectrum of 4c (with D₂O)

¹³C NMR spectrum of 4c

MS spectrum of 4c

