Supporting Information

Regioselective Hydrochlorination of Unactivated Alkenes through Combined Acid System

Shengzong Liang,[a] Gerald B. Hammond,[a]* Bo Xu[b]*

[a] Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA. [b] College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China

Table of Contents

1. General ..2
2. General procedures ...2
 2.1 General procedure for hydrochlorination of alkenes with combined acid system2
 2.2 Additive-based screening for heterocycles..2
 2.3 Comparison of efficiency with different HCl sources...2
 2.4 Study of the effect of chloride concentration...2
 2.5 Mechanism study of hydrochlorination of styrene ...2
 2.6 Gram-scale synthesis of 2a ..4
3. Characterization of product 2 ...5
1. General

1H and 13C NMR spectra were recorded at 400 MHz and 101 MHz using CDCl$_3$ as a solvent. The chemical shifts are reported in δ (ppm) values (1H and 13C NMR relative to CHCl$_3$, δ 7.26 ppm for 1H NMR and δ 77.0 ppm for 13C NMR and CFCl$_3$ (δ 0 ppm for 19F NMR), multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad). Coupling constants (J), are reported in Hertz (Hz). All reagents and solvents were employed without further purification. The products were purified using a commercial flash chromatography system. TLC was developed on silica gel 60 F254 aluminum sheets. All reagents were purchased from Sigma-Aldrich or Alfa Aesar and used as received without any further purification. HCl/DMPU (43% w/w) was prepared following our reported work.\[1\]

2. General procedures

2.1 General procedure for hydrochlorination of alkenes with combined acid system

HCl/DMPU (43% w/w, 8 equiv) was added to a solution of alkene 1 (0.2 mmol) in AcOH (0.5 ml), the mixture was stirred at room temperature for designated time. Then the reaction mixture was diluted with Et$_2$O (1 ml), sequentially washed with water (1 ml), NaHCO$_3$ aqueous solution (2 x 1 ml) and brine (1 ml). The organic layer was dried over Na$_2$SO$_4$ and concentrated to dryness. The residue was purified by flash chromatography on silica gel (hexanes/ethyl acetate) to obtain pure product 2.

2.2 Additive-based screening for heterocycles

HCl/DMPU (43% w/w, 8 equiv) and heterocycle additives (0.2 mmol, 1 equiv) were added to a solution of styrene 1a (0.2 mmol) in AcOH (0.5 ml), the mixture was stirred at room temperature for 6 h. Then internal standard CH$_2$Br$_2$ (0.2 mmol, 1 equiv) was added into the reaction mixture. Both reaction yield and additive remaining were determined through analysis of crude 1H NMR.

2.3 Comparison of efficiency with different HCl sources

HCl sources (8 equiv) was added to a solution of styrene 1a (0.4 mmol) in AcOH (1 ml), the mixture was stirred at room temperature for 5 h. The reaction yield was monitored at 20 min, 40 min, 1 h, 1.5 h, 2 h, 3 h and 5 h through analysis of crude 1H NMR.

2.4 Study of the effect of chloride concentration

Four parallel reactions with styrene 1a (0.4 mmol), HCl/DMPU (43% w/w, 2 equiv) in AcOH (1 ml) were set up, then 0, 1, 2 and 4 equivalents of LiCl was added respectively, the reaction mixtures were stirred at room temperature for 5 h. The reaction yields were monitored at 20 min, 40 min, 1 h, 1.5 h, 2 h, 3 h and 5 h through analysis of crude 1H NMR.

2.5 Mechanism study of hydrochlorination of styrene
A) KIE study for hydrochlorination of styrene

Two parallel reactions with styrene 1a (0.4 mmol), HCl/DMPU (43% w/w, 2 equiv) in AcOH (1 ml) and AcOD (1 ml) were set up, then the reaction mixtures were stirred at room temperature for 5 h. The reaction yields were monitored at 20 min, 40 min, 1 h, 1.5 h, 2 h, 3 h and 5 h through analysis of crude 1H NMR. The reaction rates were showed in Scheme S1.

![Reaction rates in AcOH and AcOD.](image)

Scheme S1. Reaction rates in AcOH and AcOD.

B) Mechanism study for step 1: acetylation of styrene

Four parallel reactions were set up: (1) styrene 1a (0.4 mmol), TfOH (2 equiv) in AcOH (1 ml); (2) styrene 1a (0.4 mmol), Ga(OTf)₃ (2 equiv) in AcOH (1 ml); (3) styrene 1a (0.4 mmol), Ga(OTf)₃ (2 equiv) in AcOD (1 ml); (4) styrene 1a (0.4 mmol) in AcOH (1 ml). Then the reaction mixtures were stirred at room temperature for 5 h. The reaction yields were monitored at 20 min, 40 min, 1 h, 1.5 h, 2 h, 3 h and 5 h through analysis of crude 1H NMR. The reaction rates of reaction (2) and (3) were showed in Scheme S2.
Scheme S2. Reaction rates of reaction (2) and (3).

C) Mechanism study for step 2: chlorination

Five parallel reactions with 1-phenylethyl acetate (0.4 mmol), HCl/DMPU (2 equiv) in solvents: (1) AcOH (1 ml); (2) AcOD (1 ml); (3) DCM (1 ml); (4) Tol (1 ml); (5) DMF were set up. Then the reaction mixtures were stirred at room temperature for 5 h. The reaction yields were monitored at 20 min, 40 min, 1 h, 1.5 h, 2 h, 3 h and 5 h through analysis of crude 1H NMR. The reaction rates of reaction (1) and (2) were showed in Scheme S3.

Scheme S3. Reaction rates of reaction (1) and (2).

2.6 Gram-scale synthesis of 2a

HCl/DMPU (43% w/w, 8 equiv) was added to a solution of styrene 1a (1.04g, 10 mmol) in AcOH (25 ml), the mixture was stirred at room temperature for 6 h. Then the reaction mixture was diluted with Et_2O (25 ml), sequentially washed with water (25 ml), NaHCO_3 aqueous solution (2 × 25 ml) and brine (25 ml). The organic layer was dried over Na_2SO_4 and concentrated to dryness. The residue was purified by flash chromatography on silica gel to obtain pure product 2a with 90% yield.
3. Characterization of product 2

(1-chloroethyl)benzene (2a)[2]

\[
\begin{array}{c}
\text{Cl} \\
\text{C} \\
\end{array}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.43 – 7.25 (m, 5H), 5.09 (q, \(J = 6.8\) Hz, 1H), 1.85 (d, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 142.78, 141.69, 128.60, 128.22, 126.47, 58.76, 26.50. Colorless oil (24.4 mg).

1-(1-chloroethyl)-2-methylbenzene (2b)[3]

\[
\begin{array}{c}
\text{Cl} \\
\text{C} \\
\text{CH}_3 \\
\end{array}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.53 (d, \(J = 7.5\) Hz, 1H), 7.25 – 7.15 (m, 3H), 5.35 (q, \(J = 6.7\) Hz, 1H), 2.42 (s, 3H), 1.87 (d, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 140.42, 135.22, 130.55, 128.14, 156.50, 125.69, 55.00, 25.16, 18.99. Colorless oil (28.0 mg).

1-(1-chloroethyl)-3-methylbenzene (2c)[3]

\[
\begin{array}{c}
\text{Cl} \\
\text{C} \\
\text{CH}_3 \\
\end{array}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.27 – 7.21 (m, 3H), 7.12 (d, \(J = 7.1\) Hz, 1H), 5.07 (q, \(J = 6.8\) Hz, 1H), 2.37 (s, 3H), 1.84 (d, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 142.71, 138.33, 129.02, 128.52, 127.19, 123.51, 58.91, 26.48, 21.41. Colorless oil (29.5 mg).

1-(1-chloroethyl)-4-methylbenzene (2d)[4]

\[
\begin{array}{c}
\text{Cl} \\
\text{C} \\
\text{CH}_3 \\
\end{array}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.31 (d, \(J = 7.8\) Hz, 2H), 7.16 (d, \(J = 7.8\) Hz, 2H), 5.08 (q, \(J = 6.9\) Hz, 1H), 2.34 (s, 3H), 1.84 (d, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 139.87, 138.10, 129.27, 126.39, 58.81, 26.43, 21.13. Colorless oil (27.7 mg).

1-(tert-butyl)-4-(1-chloroethyl)benzene (2e)[5]
1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.30 (m, 4H), 5.10 (q, $J = 6.8$ Hz, 1H), 1.85 (d, $J = 6.8$ Hz, 3H), 1.31 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 151.27, 139.74, 126.18, 125.54, 58.74, 34.58, 31.28, 26.36. Colorless oil (33.8 mg).

1-(1-chloroethyl)-3-methoxybenzene (2f)6

![Molecular structure of 1-(1-chloroethyl)-3-methoxybenzene](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.27 (d, $J = 8.2$ Hz, 1H), 7.02 – 6.95 (m, 2H), 6.84 (d, $J = 8.2$ Hz, 1H), 5.06 (q, $J = 6.8$ Hz, 1H), 3.82 (s, 3H), 1.84 (d, $J = 6.8$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.70, 144.32, 129.64, 118.75, 113.62, 112.23, 58.64, 55.26, 26.50. Colorless oil (32.4 mg).

1-(1-chloroethyl)-2-methoxybenzene (2g)7

![Molecular structure of 1-(1-chloroethyl)-2-methoxybenzene](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.33 (d, $J = 7.5$ Hz, 1H), 7.24 (t, $J = 7.8$ Hz, 1H), 6.96 (t, $J = 7.4$ Hz, 1H), 6.87 (d, $J = 8.2$ Hz, 1H), 5.09 (d, $J = 6.3$ Hz, 1H), 3.85 (s, 2H), 1.50 (d, $J = 6.5$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 156.51, 133.35, 128.28, 126.07, 120.76, 110.38, 66.53, 55.23, 22.81. Colorless oil (30.7 mg).

1-(1-chloroethyl)-4-fluorobenzene (2h)3

![Molecular structure of 1-(1-chloroethyl)-4-fluorobenzene](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.37 (m, 2H), 7.05 – 7.01 (m, 2H), 5.08 (q, $J = 6.8$ Hz, 1H), 1.83 (d, $J = 6.8$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 162.36 (d, $J = 246.0$ Hz), 138.69, 128.25 (d, $J = 9.0$ Hz), 115.47 (d, $J = 21.0$ Hz), 57.92, 26.56. Colorless oil (29.5 mg).

1-chloro-4-(1-chloroethyl)benzene (2i)4

![Molecular structure of 1-chloro-4-(1-chloroethyl)benzene](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.26 (m, 4H), 5.05 (q, $J = 6.8$ Hz, 1H), 1.82 (d, $J = 6.8$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 141.29, 133.95, 128.77, 127.89. Colorless oil (32.9 mg).

1-(1-chloroethyl)-4-(trifluoromethyl)benzene (2j)8

![Molecular structure of 1-(1-chloroethyl)-4-(trifluoromethyl)benzene](image)
1H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 5.10 (q, J = 6.9 Hz, 1H), 1.84 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl₃) δ 146.56, 130.18 (m), 126.89, 125.65 (d, J = 3.0 Hz), 57.47, 26.45. Colorless oil (32.5 mg).

(1-chloropropyl)benzene (2k)[9]

1H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 4.79 (t, J = 8.0 Hz, 1H), 2.22 – 1.99 (m, 2H), 1.00 (t, J = 8.0 Hz, 3H). 13C NMR (100 MHz, CDCl₃) δ 141.75, 128.54, 128.14, 126.95, 65.46, 33.20, 11.69. Colorless oil (22.6 mg).

2-chlorooctane (2m)[10]

1H NMR (400 MHz, CDCl₃) δ 4.02 (q, J = 6.6 Hz, 1H), 1.73 – 1.66 (m, 2H), 1.56 – 1.28 (m, 11H), 0.89 – 0.86 (m, 3H). 13C NMR (100 MHz, CDCl₃) δ 58.88, 40.36, 31.67, 28.76, 26.59, 25.31, 22.54, 14.00. Colorless oil (19.33 mg).

2-chlorotridecane (2n)[11]

1H NMR (400 MHz, CDCl₃) δ 4.02 (q, J = 6.7 Hz, 1H), 1.70 (td, J = 5.7, 3.0 Hz, 2H), 1.55 – 1.17 (m, 21H), 0.93 – 0.78 (m, 3H). 13C NMR (100 MHz, CDCl₃) δ 58.95, 40.37, 31.89, 29.61, 29.55, 29.48, 29.32, 29.11, 26.65, 26.51, 25.33, 22.67, 14.09. Colorless oil (31.1 mg).

(2-chloropropyl)benzene (2o)[12]

1H NMR (400 MHz, CDCl₃) δ 7.39 – 7.15 (m, 5H), 4.24 – 4.19 (m, 1H), 3.02 (ddd, J = 50.8, 13.8, 6.8 Hz, 2H), 1.50 (d, J = 6.5 Hz, 3H). 13C NMR (100 MHz, CDCl₃) δ 137.94, 129.31, 128.38, 126.76, 58.50, 46.66, 24.64. Colorless oil (24.4 mg).

1-(2-chloropropyl)-4-methylbenzene (2p)[13]
1H NMR (400 MHz, CDCl$_3$) δ 7.11 (m, 4H), 4.24 – 4.16 (m, 1H), 2.99 (dd, J = 50.7, 13.8, 6.9 Hz, 2H), 2.33 (s, 3H), 1.50 (d, J = 6.5 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 136.33, 134.90, 129.19, 129.08, 58.70, 46.26, 24.62, 21.06. Colorless oil (27.3 mg).

1-(2-chloropropyl)-4-fluorobenzene (2q)$^{[13]}$

\[\text{F} \quad \text{Cl} \quad \text{CF} \]

1H NMR (400 MHz, CDCl$_3$) δ 7.25 – 6.97 (m, 4H), 4.21 – 4.13 (m, 1H), 3.12 – 2.83 (m, 2H), 1.50 (d, J = 6.5 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 161.8 (d, J = 244.0 Hz), 133.60, 130.79 (d, J = 7.0 Hz), 115.19 (d, J = 21.0 Hz), 58.44, 45.69, 24.61. Colorless oil (24.9 mg).

1-(2-chloropropyl)-4-methoxybenzene (2r)$^{[14]}$

\[\text{O} \quad \text{Cl} \]

1H NMR (400 MHz, CDCl$_3$) δ 7.11 (d, J = 8.1 Hz, 2H), 6.84 (d, J = 7.8 Hz, 2H), 4.20 – 4.12 (m, 1H), 3.78 (s, 3H), 2.95 (ddd, J = 49.0, 13.9, 6.8 Hz, 2H), 1.48 (d, J = 6.5 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 158.42, 130.30, 130.04, 113.76, 58.84, 55.21, 45.77, 24.52. Colorless oil (28.1 mg).

4-(2-chloropropyl)-1,2-dimethoxybenzene (2s)

\[\text{O} \quad \text{O} \quad \text{Cl} \]

1H NMR (400 MHz, CDCl$_3$) δ 6.82 – 6.70 (m, 3H), 4.24 – 4.11 (m, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.07 – 2.79 (m, 2H), 1.50 (d, J = 8.0 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 148.79, 147.91, 130.55, 121.39, 112.59, 111.14, 58.70, 55.86, 46.27, 24.60, 24.55. HRMS(CI) calcd. for [C$_{11}$H$_{16}$ClO$_2$] ([M+H]) 215.0839; found 215.0828. Colorless oil (32.6 mg).

(3-chlorobutyl)(phenyl)sulfane (2t)

\[\text{S} \quad \text{Cl} \quad \text{Cl} \quad \text{S} \]

1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.19 (m, 5H), 4.23 – 4.17 (m, 1H), 3.19 – 2.98 (m, 2H), 2.03 – 1.97 (m, 2H), 1.52 (d, J = 8.0 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 138.85, 129.32, 128.95, 126.13, 57.05, 39.48, 30.72, 25.24. Colorless oil (30.1 mg). HRMS(CI) calcd. for [C$_{10}$H$_{12}$ClS] ([M-H]) 199.0348; found 199.0338. Colorless oil (110.6 mg).

((3-chlorobutyl)sulfonyl)benzene (2u)$^{[15]}$

\[\text{O} \quad \text{S} \quad \text{O} \quad \text{Cl} \]

1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.04 (m, 5H), 4.23 – 4.17 (m, 1H), 3.19 – 2.98 (m, 2H), 2.03 – 1.97 (m, 2H), 1.52 (d, J = 8.0 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 138.85, 129.32, 128.95, 126.13, 57.05, 39.48, 30.72, 25.24. Colorless oil (30.1 mg). HRMS(CI) calcd. for [C$_{10}$H$_{12}$ClS] ([M-H]) 199.0348; found 199.0338. Colorless oil (110.6 mg).
\[\text{H NMR (400 MHz, CDCl}_3\delta \text{ 7.92 – 7.90 (m, 2H), 7.69 – 7.65 (m, 1H), 7.60 – 7.56 (m, 2H), 4.13 – 4.05 (m, 1H), 3.38 – 3.18 (m, 2H), 2.27 – 1.98 (m, 2H), 1.51 (d, } J = 8.0 \text{ Hz, 3H).}\]

\[\text{13C NMR (100 MHz, CDCl}_3\delta \text{ 138.99, 133.87, 129.39, 127.95, 56.18, 53.66, 32.88, 25.18.}\]

Colorless oil (39.6 mg).

\[2-(3\text{-chlorobutyl})\text{isoindoline-1,3-dione (2v)}^{[16]}\]

\[\begin{align*}
N & \text{O} \\
\text{Cl} & \text{O}
\end{align*}\]

\[\text{H NMR (400 MHz, CDCl}_3\delta \text{ 7.83 – 7.68 (m, 4H), 7.69 – 7.65 (m, 1H), 7.60 – 7.56 (m, 2H), 4.06 – 4.01 (m, 1H), 3.91 – 3.77 (m, 2H), 2.13 – 2.01 (m, 2H), 1.54 (d, } J = 8.0 \text{ Hz, 3H).}\]

\[\text{13C NMR (100 MHz, CDCl}_3\delta \text{ 168.17, 133.96, 132.03, 123.24, 55.54, 38.63, 35.64, 25.27.}\]

Colorless oil (39.5 mg).

\[4-(3\text{-chlorobutoxy})\text{benzonitrile (2x)}\]

\[\begin{align*}
\text{N} & \text{C} \\
\text{Cl} & \text{O}
\end{align*}\]

\[\text{H NMR (400 MHz, CDCl}_3\delta \text{ 7.58 (d, } J = 8.0 \text{ Hz, 2H), 6.94 (d, } J = 8.0 \text{ Hz, 2H), 4.31 – 4.12 (m, 3H), 2.28 – 2.06 (m, 2H), 1.60 (d, } J = 8.0 \text{ Hz, 3H).}\]

\[\text{13C NMR (100 MHz, CDCl}_3\delta \text{ 161.96, 133.99, 119.09, 115.17, 65.24, 54.72, 39.38, 25.50. HRMS(Cl) calcd. for [C}_{11}\text{H}_{13}\text{ClNO} ([M+H]) 210.0686; found 210.0679. White solid (26.0 mg).}\]

\[1-(3\text{-chlorobutoxy})-4\text{-nitrobenzene (2y)}\]

\[\begin{align*}
\text{O} & \text{N} \\
\text{Cl} & \text{O}
\end{align*}\]

\[\text{H NMR (400 MHz, CDCl}_3\delta \text{ 8.19 (d, } J = 8.0 \text{ Hz, 2H), 6.95 (d, } J = 8.0 \text{ Hz, 2H), 4.33 – 4.17 (m, 3H), 2.31 – 2.08 (m, 2H), 1.61 (d, } J = 8.0 \text{ Hz, 3H).}\]

\[\text{13C NMR (100 MHz, CDCl}_3\delta \text{ 163.71, 141.60, 125.90, 114.42, 65.70, 54.70, 39.35, 25.51. HRMS(Cl) calcd. for [C}_{10}\text{H}_{13}\text{ClNO}_3 ([M+H]) 230.0584; found 230.0576. Colorless oil (41.3 mg).}\]

\[4-(3\text{-chlorobutoxy})\text{benzaldehyde (2z)}\]

\[\begin{align*}
\text{O} & \text{H} \\
\text{Cl} & \text{O}
\end{align*}\]

\[\text{H NMR (400 MHz, CDCl}_3\delta \text{ 9.88 (s, 1H), 7.83 (d, } J = 8.0 \text{ Hz, 2H), 7.00 (d, } J = 8.0 \text{ Hz, 2H), 4.32 – 4.17 (m, 3H), 2.29 – 2.08 (m, 2H), 1.61 (d, } J = 8.0 \text{ Hz, 3H).}\]

\[\text{13C NMR (100 MHz, CDCl}_3\delta \text{ 190.69, 163.72, 131.96, 130.09, 114.75, 65.23, 54.81, 39.48, 25.50. HRMS(Cl) calcd. for [C}_{11}\text{H}_{14}\text{ClO}_2 ([M+H]) 213.0682; found 213.0673. Colorless oil (29.8 mg).}\]

\[4\text{-chlorooctane (2a')}[17]\]

\[\text{Cl} \quad \text{Cl}\]
H NMR (400 MHz, CDCl₃) δ 3.93 – 3.87 (m, 1H), 1.73 – 1.20 (m, 10H), 0.94 – 0.83 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 63.94, 40.57, 38.22, 28.62, 22.25, 19.67, 13.92, 13.55. Colorless oil (21.4 mg).

chlorocyclooctane (2b')[¹⁸]

1H NMR (400 MHz, CDCl₃) δ 4.25 – 4.18 (m, 1H), 2.13 – 1.93 (m, 4H), 1.77 – 1.72 (m, 2H), 1.58 – 1.50 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 63.54, 35.13, 27.37, 24.89, 23.54. Colorless oil (24.4 mg).

1-chloro-1-methylcyclohexane (2c')[¹⁹]

1H NMR (400 MHz, CDCl₃) δ 1.94 – 1.85 (m, 2H), 1.76 – 1.50 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 72.43, 41.55, 33.46, 25.18, 22.62. Colorless oil (23.1 mg).
4. Copies of NMR spectra of product 2

![NMR Spectra of Product 2](image-url)
References