Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Rapid Screening of Gas Catalysts in Methane Activation Using ICP-QQQ-MS

Qian He^{a,b}, Jiajia Wu^c, Sichun Zhang^a, Xiang Fang^d, Zhi Xing^a, Chao Wei^{d*} and Xinrong Zhang^{a*}

^aDepartment of Chemistry, Tsinghua University, Beijing 100084, China ^bKey Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China ^cAgilent Technologies Co. Ltd., Beijing 100102, China ^dNational Institute of Metrology, Beijing 100029, China *Corresponding author email: xrzhang@mail.tsinghua.edu.cn; weichao@nim.ac.cn

1. The selectivities of C_2H_4 and C_2H_6 catalyzed by different gas ions catalysts in ICP-QQQ-MS system

The relationship between the MS intensities (at m/z = 28 and 30) and the concentrations of C_2H_4 and C_2H_6 in standard mix gas were shown in Fig.S2 and Fig.S3, respectively. According to the linear relationship in Fig.S2 and Fig.S3, the concentrations of C_2H_4 and C_2H_6 formed by CH_4 activation by different gas ions catalysts in ICP-QQQ-MS system could be calculated.

The selectivities of C_2H_4 and C_2H_6 were calculated as follows:

 $S(C_2H_4) = 2Concentration(C_2H_4)/Consumed concentration(CH_4);$

 $S(C_2H_6) = 2Concentration(C_2H_6)/Consumed concentration(CH_4).$

However, the consumed concentration of CH_4 in ICP-QQQ-MS system could not be precisely calculated. To semi-quantitative estimation of the selectivities of C_2H_4 and C_2H_6 , $S1(C_2H_4)$ and $S1(C_2H_6)$ were used, which

 $S1(C_2H_4) = 2Concentration(C_2H_4)/Original concentration(CH_4);$

 $S1(C_2H_6) = 2Concentration(C_2H_6)/Original concentration(CH_4).$

Compared S and S1, it could be concluded that S should be higher than S1. The $S1(C_2H_4)$ and $S1(C_2H_6)$ catalyzed by different gas ions in ICP-QQQ-MS system were calculated in Table S2."

2. The calculation for conversion and selectivity by Se catalyst in DBD-GC system

According to Table 1, the conversion of methane induced by Se catalyst $(\Delta Conv_{CH4})$ was calculated as:

 $\Delta \text{Conv}_{\text{CH4}} = (3925 / 53881) \times 100\% = 7.3\%;$

The concentration of CH₄ consumed by Se catalyst (Δ CH₄) was calculated as:

 $\Delta CH_4 = (3925 / 79.19) \times 10 = 495 \text{ ppm};$

The concentration of C₂H₆ produced by Se catalyst (Δ C₂H₆) was calculated as: Δ C₂H₆ = (132 / 129.97) ×10 = 10.15 ppm;

The concentration of C_2H_4 produced by Se catalyst (ΔC_2H_4) was calculated as:

 $\Delta C_2 H_4 = (671/133.53) \times 10 = 50.25$ ppm;

The selectivity of C_2H_6 induced by Se catalyst ($\Delta S_{C2H6})$ was calculated as:

 $\Delta S_{C2H6} = 10.15 \times 2 \ / \ 495 = 4.1\%;$

The selectivity of C_2H_4 induced by Se catalyst (ΔS_{C2H4}) was calculated as:

 $\Delta S_{C2H4} = 50.25 \times 2 \; / \; 495 = 20.3\%.$

Parameters	Values	
Scan type	MS/MS	
RF power(W)	1550	
Extract 1 (V)	0	
Q1 bias (V)	1.0	
Q1→Q2	x→2~260	
Octopole bias (V)	-5.0	
Octopole RF (V)	150	
Collision He gas speed(mL min ⁻¹)	1.0	
The third gas speed (%)	5	
Energy discrimination (V)	-7.0	
Extract 2 (V)	-165	
Wait time offset (ms)	2	
Sweeps / replicate	5	
Integration time / mass (s)	0.1	
Replicates	3	

Table S1 The parameters used in ICP-QQQ-MS.

Catalysts	S1(C ₂ H ₄ , %)	S1(C ₂ H ₆ , %)	Catalysts	S1(C ₂ H ₄ , %)	S1(C ₂ H ₆ , %)
Sc^+	_	_	Cd^+		
Ti ⁺	_	_	In ⁺		_
V^+	1.20E-5	_	Hf^{+}	4.84E-3	_
Cr^+	8.16E-4	_	Ta^+	8.86E-3	_
Mn^+	2.09E-2		W^+	1.29E-2	_
Fe^+	0.499		Re^+	6.85E-3	
Co^+	8.16E-4		Ir^+	1.21E-5	
Ni ⁺	8.16E-4		Pt^+	1.59E-2	13.0
Cu^+			Au^+	1.69E-2	0.176
Zn^+			S^+	1.89E-2	4.41E-2
Ga^+			As^+		—
\mathbf{Y}^+			Se^+	0.121	
Zr^+			Sn^+		—
Nb^+	3.70E-2		Sb^+		—
Mo^+	4.84E-3		Te ⁺		—
Ru^+	4.84E-3		Pb^+		
Rh^+			Bi ⁺		_
Pd^+			Hg^+	3.43E-3	
Ag^+		_			

Table S2 The $S1(C_2H_4)$ and $S1(C_2H_6)$ catalyzed by different gas ions for CH_4 activation in ICP-QQQ-MS system.

Fig.S1 The mass spectra of the standard mix gas of ethylene and ethane with the same concentration of 10ppm(b) and its blank(a) in our homogeneous system.

Fig.S2 The relationship between the MS intensities (m/z 28) and the concentrations of C_2H_4 inICP-QQQ-MSsystem.

Fig.S3 The relationship between the MS intensities (m/z 30) and the concentrations of C_2H_6 in ICP-QQQ-MS system.

Fig.S4 The GC chromatogram of the standard mix gas of methane, ethylene, ethane and propylene with the same concentration.

Peak	Species	Relative Retention	Concentration	Peak Area
		Time(min)	(ppm)	
1	CH_4	0	10	79.19
2	C_2H_6	0.426	10	129.97
3	C_2H_4	0.71	10	133.53
4	C_3H_6	1.743	10	218.54

Table S3 The values in the GC chromatogram in Fig.S4.

Fig.S5 The GC chromatogram of methane itself.

Table 54 The values in the GC chromatogram in Fig.5	Table S4	The va	alues in	the GC	chromatogram	in	Fig.S5
---	----------	--------	----------	--------	--------------	----	--------

Peak	Species	Relative Retention Time(min)	Peak Area
1	CH_4	0	53881

Fig.S6 The GC chromatogram of methane in DBD system.

Peak	Species	Relative Retention Time(min)	Peak Area
1	CH ₄	0	36710
2	C_2H_6	0.43	2180
3	C_2H_4	0.78	550
4	C_3H_6	1.79	485

Table S5 The values in the GC chromatogram in Fig.S6.

Fig.S7 The GC chromatogram of methane/Se mixture in DBD system.

Peak	Species	Relative Retention Time(min)	Peak Area
1	CH ₄	0	32785
2	C_2H_6	0.43	2312
3	C_2H_4	0.78	1221
4	C_3H_6	1.79	508

Table S6 The values in the GC chromatogram in Fig.S7.