Supporting Information for

Rapid Large Area Fabrication of Multiscale Through-hole Membrane

Dongha Tahk, a,b Sang-Min Paik, d Jungeun Lim, a,b Seokyoung Bang, a,b Soojung Oh, a Hyunryul Ryu a

and Noo Li Jeon a,b,c,d*

a School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea

b World Class University Program on Multiscale Mechanical Design, Seoul National University, Seoul 151-742, Korea

c Institute of Advanced Machines and Design, Seoul National University, 151-744, Seoul, KOREA

d Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Korea

* Corresponding author.

E-mail: njeon@snu.ac.kr.

Phone: +82-2-880-7111. Fax: +82-2-880-7119.
Figure S1. A detailed SEM image for the diverse design of micro membrane. All of the white scale bar indicates 500 μm except trigonal arrow and square brackets reverse array (1cm).
Figure S2. a) Microalgae culture on the solid nutrient medium by streak plate method. High density of microalgae area showed small colony, and low density area show the large colony size. This means quorum sensing effect. b) The average of colony size which was composed of three different microalgae cell strains [CC-124 (137c, mt-), CC-4349 (cw15 mt-strain) and CC-2960 (pfl14 nic7 mt+)] as a large or small colony, was slightly different depends on cell strain.
Figure S3. a) The cell trapping efficiency. The total hole number in a single membrane sheet was 2500, and the high concentration and high try number had a high value of cells trapped efficiency in a single pore. In Figure 3d) shows the efficiency of trapped cells such as one, two and three.
Figure S4. The single cell trapping method by novel through-hole membrane (a) versus conventional microwell cell trapping only agar (b).