Electronic Supplementary Information (ESI)

Discovering potential driver genes through an integrated model of somatic mutation profiles and gene functional information

Jianing Xi,^{‡a} Minghui Wang^{‡ab} and Ao Li^{*ab}

^a School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China.

^b Centers for Biomedical Engineering, University of Science and Technology of China, Hefei AH230027, China.

*E-mail: aoli@ustc.edu.cn

‡ Joint first authors.

List of Figures

Fig. S1 The F1 scores of the results of IntDriver under the parameters λ_N and λ_S set to different values. As illustrated, the performances of IntDriver for the datasets of the three types of cancers are robust to the two parameter λ_N and λ_S generally. The F1 scores under λ_N and λ_S set to 0.3 and 0.7 are relative better than those	
 Fig. S2 The pie diagram illustrating the proportions of known benchmarking driver genes in the top ranked 100 genes identified by IntDriver, HotNet2, MUFFINN-DNmax, MUFFINN-DNsum, DriverNet, NBS(k=3), NBS(k=4) and ReMIC, when these approaches are applied on (a) BRCA dataset, (b) KIRC dataset and (c) LUSC dataset. The benchmarking driver genes used in this study are from NCG [1], including cancer-specific experimentally 	2
supported CGC genes [2], experimentally supported genes from CGC [2] and statistically inferred candidate genes. Black numbers near the pie diagrams represent the numbers of the detected cancer-specific CGC genes, while the gray numbers represent the numbers of detected CGC genes, NCG genes and other genes	2
Fig. S3 The precisions, recalls and F1 scores for NCG benchmarking driver genes of the top 200 genes selected by IntDriver, HotNet2, MUFFINN-DNmax, MUFFINN-DNsum, DirverNet, NBS(k=3), NBS(k=4) and ReMIC on (a) BRCA dataset. (b) KIRC dataset and (c) LUSC dataset respectively.	3
List of Tables Table S1 The driver gene candidates identified in the top 200 genes prioritized by IntDriver on BRCA dataset. Their ranks, gene symbols and mutation frequencies are demonstrated in the table, along with whether the genes are experimentally (CGC & NCG) supported or statistically inferred (NCG). The asterisk * represents that the	
gene is reported to related with breast cancer	4
Table S3 The driver gene candidates identified in the top 200 genes prioritized by IntDriver on LUSC dataset. Their ranks, gene symbols and mutation frequencies are demonstrated in the table, along with whether the genes are experimentally (CGC & NCG) supported or statistically inferred (NCG). The asterisk * represents that the gene is reported to related with lung squamous cell carcinoma	6
Table S4 The p-values of Fisher's exact test accessing the enrichment significance for NCG [1] benchmarking driver genes of the top 50, 100, 150 and 200 genes selected by IntDriver, NotNet2, MUFFINN-DNmax, MUFFINN-DNsum, DriverNet, NBS(k=3), NBS(k=4), BeMIC	7
Table S5 Results of functional enrichment analysis of the top 200 genes identified by IntDriver on BRCA datasets	1

Table S6Results of functional enrichment analysis of the top 200 genes identified by IntDriver on KIRC datasets.9

Fig. S1. The F1 scores of the results of IntDriver under the parameters λ_N and λ_S set to different values. As illustrated, the performances of IntDriver for the datasets of the three types of cancers are robust to the two parameter λ_N and λ_S generally. The F1 scores under λ_N and λ_S set to 0.3 and 0.7 are relative better than those under the other settings among the three cancer datasets RBCA, KIRC and LUSC.

Fig. S2. The pie diagram illustrating the proportions of known benchmarking driver genes in the top ranked 100 genes identified by IntDriver, HotNet2, MUFFINN-DNmax, MUFFINN-DNsum, DriverNet, NBS(k=3), NBS(k=4) and ReMIC, when these approaches are applied on (a) BRCA dataset, (b) KIRC dataset and (c) LUSC dataset. The benchmarking driver genes used in this study are from NCG [1], including cancer-specific experimentally supported CGC genes [2], experimentally supported genes from CGC [2] and statistically inferred candidate genes. Black numbers near the pie diagrams represent the numbers of the detected cancer-specific CGC genes, while the gray numbers represent the numbers of detected CGC genes.

Fig. S3. The precisions, recalls and F1 scores for NCG benchmarking driver genes of the top 200 genes selected by IntDriver, HotNet2, MUFFINN-DNmax, MUFFINN-DNsum, DirverNet, NBS(k=3), NBS(k=4) and ReMIC on (a) BRCA dataset, (b) KIRC dataset and (c) LUSC dataset respectively.

Table S1. The driver gene candidates identified in the top 200 genes prioritized by IntDriver on BRCA dataset. Their ranks, gene symbols and mutation frequencies are demonstrated in the table, along with whether the genes are experimentally (CGC & NCG) supported or statistically inferred (NCG). The asterisk * represents that the gene is reported to related with breast cancer.

Rank	Symbol	MutFreq	Benchmarking	Rank	Symbol	MutFreq	Benchmarking	Rank	Symbol	MutFreq	Benchmarking
1	PIK3CA	180	CGC* & NCG*	68	COL12A1	11		135	MLLT4	12	CGC & NCG
2	TP53	190	CGC* & NCG*	69	CACNA1B	13		136	UBR5	10	CGC & NCG*
3	CATA3	55	CGC* & NCC*	70	BELN	17		137	CHD4	11	CGC & NCG
4	TTN	86	NCC	71	WDEV2	10		199	VIE4A	0	ede æ ned
4	1 I IN MADOICI	40	ACC NCC	71	WDF15	15	NGG*	130	CDDM0	9	
5	MAP3KI	40	UGU & NUG	72	IG	15	NCG*	139	SRRM2	9	
6	MUC16	55	NCG	73	LAMAI	12	NCG	140	TTPKB	8	
7	CDH1	34	CGC [*] & NCG [*]	74	FLNC	14	NCG*	141	ASPM	10	
8	USH2A	32	NCG*	75	CACNA1G	14		142	DCAF17	4	
9	OBSCN	30	NCG	76	LRP1	12		143	LASP1	4	CGC & NCG
10	RYR2	33	NCG*	77	BRAT1	8		144	CHD5	8	NCG*
11	BRCA2	24	$CGC^* \& NCG^*$	78	WNK3	8		145	CCT6B	6	NCG
12	SYNE1	22	NCG	79	ADAMTS5	7		146	DNAH1	12	
13	MAP2K4	21	CGC [*] & NCG [*]	80	CADPS	8		147	MGAM	12	NCG
14	BBCA1	19	CGC & NCG*	81	CACNAIC	12		148	DOCK2	6	NCG
15	FLG	28		82	ANKBD24	5		149	HECW2	9	
16	CSMD1	28	NCC*	83	PRY	5		150	MYOOB	ő	
17	SDTA1	19	NCC	84	DTDDU	5		151	NUAKO	0	
19	MUCA	26	NCC	95	MYO10	12		152	RCORI 1		
10	DVD2	20	NCG	80	COLGAR	10		152	BCMO1	4	
19	RI RS	24	NCG	80	COLOAS	10		155	BOMOI	4	aga i Nag
20	RUNXI	19	CGC & NCG	87	CACNAID	8		154	MYHII	8	CGC & NCG
21	AKT1	13	CGC ⁺ & NCG ⁺	88	RABIF	3		155	RAB3GAP2	9	
22	DMD	17	NCG	89	SPI1	16		156	KCNB2	8	
23	APOB	19	NCG	90	HRNR	12	NCG	157	DNM3	3	
24	LRP2	20	NCG	91	PXDN	6	NCG	158	KIRREL	6	
25	DNAH5	14		92	UTRN	11		159	NNT	4	
26	SPEN	19		93	PREX2	13	NCG	160	PLCE1	9	
27	DST	14	NCG	94	VWF	13	NCG	161	HERC2	10	NCG
28	ZFHX3	14	CGC & NCG	95	KAT6B	9	CGC & NCG	162	IL17RC	5	
29	CTCF	15	CGC [*] & NCG [*]	96	SVEP1	14		163	SP100	4	
30	ANK1	14		97	LAMA5	13		164	CDC42BPA	8	
31	TBX3	14	CGC [*] & NCG [*]	98	PCDHA5	5		165	CENPE	10	
32	RYR1	17	NCG	99	PCDHA1	8		166	ATAD5	7	
33	TBL1XB1	10	CGC & NCG*	100	MED12	11	CGC & NCG	167	TANC2	7	
34	ATM	20	CGC & NCG	101	DNAH7	10	NCG	168	EPHB1	7	NCG*
35	CBFB	9	CGC & NCG*	102	FBN1	13	Red	169	CBX8	3	Ned
26	NCORI	19	CCC* & NCC*	102	AKADO	11	CCC & NCC*	170	TAMA2		
27	FOXAL	10	CCC & NCC	103	ZEDM2	11	CGC & NCG	170	SMEKS	5	
37	FUAAI	0	NGC & NCG	104		11 F	aga (Nag*	171	DOLE	5	
38	MUC2	18	NCG	105	ARID2	5	CGC & NCG	172	POLE	(NGG
39	MED23	9	NGG*	106	PIEN	18	CGC & NCG	173	DSCAMLI	9	NCG
40	AFF2	14	NCG*	107	MYH7	11	* * * * * * *	174	EEAI	5	
41	DNAH3	15		108	ERBB2	8	CGC [*] & NCG [*]	175	HCFC1	7	
42	NEB	19	NCG	109	PIK3R1	15	CGC & NCG*	176	PCDHA8	8	
43	SRCAP	12		110	TSC22D1	6	NCG	177	CAPN1	11	
44	UBR4	18		111	SDK1	13		178	MYH9	8	$CGC \& NCG^*$
45	XIRP2	15	NCG	112	RIMBP2	10	NCG	179	VPS18	6	
46	HECW1	13		113	COL14A1	11		180	SCN10A	9	
47	MDN1	15		114	ARHGAP35	8		181	NCOA3	7	NCG
48	PLXNA4	12		115	MYO5B	9	NCG	182	FLNB	9	NCG*
49	SSPO	20		116	PKD1	10		183	ERBB3	9	CGC & NCG [*]
50	SYNE2	19	NCG	117	CACNA1F	8	NCG*	184	LATS2	4	
51	BZRAP1	11		118	MYH7B	9		185	HNF4A	3	
52	BCOR	7	CGC & NCG	119	ZDBF2	10	NCG	186	GRIK2	8	
53	CIT	11	NCG	120	WDB7	8		187	PKHD1	13	NCG*
54	ARID1A	11	CGC* & NCC*	120	PDE3A	11		188	ATN1	9	NCG*
55	CCDC40	4	ede æned	1221	DTDDD	10	NCC*	180	CRINOC	7	Ned
56	PDE4DIP	7	CGC & NCG	122	CBOCC	12	NCG	190	IKBKE	6	
57	DIEC	16	NCC	123	ARIDIR	10	CCC* & NCC*	101	DIMES	7	NCC*
57	DDID1	10	CCC & NCC	124	TILLDID DE	11	CGC & NCG	102	TDDM6	1 5	NCC
50	CELCD1	10	CGC & NCG	120	CUDe	11	NCC	192	ADCVS	7	NCC
39	CELSKI	0	NGG*	120	CHD0	9	NUG	193	ADU18	1	NGG
60	EPG5	9	NUG.	127	DCC	10	NGG	194	RNF213	11	UGC & NCG
61	PONT	11	N00*	128	MACF1	11	NCG	195	K1AA2022	10	NCG
62	LRBA	11	NCG*	129	MYTIL	10		196	DYNC2H1	9	NCG*
63	ANK3	11	NCG	130	MYLK	10		197	AMPD1	7	
64	LETM1	5	NCG	131	PREX1	9		198	MYH14	10	
65	MTOR	13		132	CBLB	10	CGC & NCG	199	CACNA1A	10	
66	MUC12	11		133	HSPG2	11		200	MGA	10	NCG
67	CACNA1E	14	NCG	134	CSMD2	13	NCG				

Table S2. The driver gene candidates identified in the top 200 genes prioritized by IntDriver on KIRC dataset. Their ranks, gene symbols and mutation frequencies are demonstrated in the table, along with whether the genes are experimentally (CGC & NCG) supported or statistically inferred (NCG). The asterisk * represents that the gene is reported to related with kidney renal clear cell carcinoma.

Bank	Symbol	MutFreq	Benchmarking	Bank	Symbol	MutFreq	Benchmarking	Bank	Symbol	MutFreq	Benchmarking
1	VIII	248	CCC* & NCC*	C Q	MUCE	10	Deneminarking	125	ULA DOB1	11	Deneminarking
1	VHL	248	CGC & NCG	68	MUC6	19	200	135	HLA-DQB1	11	
2	PBRMI	167	CGC* & NCG*	69	MAGECI	18	NCG	136	CUL9	11	
3	MUC4	103	NCG	70	UHRF1BP1	5		137	NEB	18	NCG
4	TTN	89	NCG	71	ATM	16	CGC & NCG	138	AKAP9	14	CGC & NCG
5	SETD2	62	CGC [*] & NCG [*]	72	MKNK2	5		139	EIF4G3	7	
6	BAP1	49	CGC [*] & NCG [*]	73	ANPEP	11		140	SLC36A1	5	
7	PABPC1	22	NCG	74	PCSK5	15		141	LRBA	5	NCG
8	MUC16	50	NCG	75	SVEP1	11		142	MLLT3	9	CGC & NCG
ő	ZEHX3	12	CGC & NCG	76	BBM26	5		1/3	MEGE10	8	000 @ 1100
10	DTEN	20	CCC & NCC	77	FLC	19		140	DVUD1	14	NCC
10	FIEN	20	CGC & NCG		FLG	13		144	FKHDI	14	NCG
11	KDM5C	32	CGC & NCG	78	NDUFSI	8		145	PRKCD	5	
12	PDE4DIP	26	CGC & NCG	79	CR1	7	NCG	146	EPRS	5	
13	VCAN	9	NCG	80	PODXL	6		147	PABPC3	12	NCG
14	TP53	16	CGC & NCG [*]	81	TOM1L2	5		148	LILRB4	8	
15	FBN2	17	NCG	82	MTMR4	6		149	OGDH	6	
16	SPEN	12		83	HLA-DRB5	11		150	LRP2	16	NCG
17	ANK2	12	NCG	84	PLB1	7	NCG	151	OBSCN	10	NCG
18	PBKAG2	15		85	AKB1C1	5		152	TTI1	5	
10	DST	20	NCG	86	MICALS	8	NCG	153	PCSK2	5	
20	DDV1	7	Neg	87	EMNO	16	NCC*	154	DOLDOD	F	
20	DAM150D	10		87	I ININZ	10	NCG	154	I OLITZD	10	
21	FAM179B	10	NGG	88	HERCI	11		155	PONT	10	
22	USH2A	21	NCG	89	MYHII	10	CGC & NCG	156	RRP12	7	
23	PCLO	20	NCG	90	SDHA	12		157	KDM5B	7	NCG
24	CASP8AP2	4		91	ADCY8	6	NCG	158	XPO1	6	CGC & NCG
25	SETBP1	9	CGC & NCG	92	PPP1R3A	4	NCG	159	SMARCA4	15	CGC & NCG
26	FREM1	7	NCG	93	GLS	6		160	FN1	8	NCG
27	SYNRG	6		94	NBR1	6		161	UBR4	14	
28	ZBTB38	10		95	LRRK1	11	NCG	162	COL6A3	15	
29	CEP290	9		96	SEC14L4	4		163	MACE1	14	NCG
30	GPRIN1	10		97	CBOCC	8	NCG	164	ITIH4	5	
31	ADCV2	6	NCG	98	TATDN1	4		165	UIMC1	6	
20	ADCI2	7	NCG	30	WDEV2	10		166	TDDMC	F	NCC
34	HELLS DDD1	10		99	WDF15	12		100	DAZOD	0 10	NCG
33	HLA-DRBI	16		100	ZNF/14	4		167	BAZ2B	13	NCG
34	CSPG4	6		101	IL17RC	5		168	SSPO	15	
35	MTOR	25		102	STARD9	9		169	INPP5E	3	
36	PAH	7		103	EBF3	9		170	LAMA1	14	NCG
37	ANK3	15	NCG	104	YLPM1	12		171	CNOT1	13	NCG
38	TCEB1	5		105	ZNFX1	11		172	MUC2	15	NCG
39	TRIOBP	6	NCG	106	DPP10	7	NCG	173	DNAH3	14	
40	PREX1	7		107	DSC2	4		174	MYO5B	12	NCG
41	HUWE1	12		108	AHNAK	10	NCG*	175	BYB1	15	NCG*
42	AFF3	8	CGC & NCG	100	NFASC	6		176	LBP1	15	
42	DVD2	14	NCC	110	SUCLC1	6		177	ACI	5	
43	DVD9	15	NCG	111	ED400	10		179	TCUZ2	0	
44	nin2	15	NCG	111	EF400	10	NGG	178	15625	0	
45	RIFI	(112	HLA-B	10	NCG	179	JMJDIC	9	
46	LIST	14		113	ANKRD17	9		180	KUNMA1	4	NGG
47	CUBN	16		114	BCORL1	9		181	CARD10	3	NCG
48	ARID1A	20	CGC [*] & NCG [*]	115	PLEC	11	NCG	182	PAK6	5	
49	PTCH1	14	CGC & NCG	116	STAG2	8		183	USP18	6	NCG
50	TNS1	9		117	CABIN1	9		184	SSFA2	6	
51	SYNE2	13	NCG*	118	NBEA	7		185	NSD1	8	CGC & NCG
52	SLIT2	12	NCG	119	LAMA3	6		186	SERPINB4	4	
53	SYNE1	22	NCG	120	DNAH7	13	NCG	187	BAZ2A	3	
54	GBM8	9	NCG	121	BABAM1	7	NCG	188	CHD5	7	NCG
55	ASMTL	6		122	BCHY1	5		189	BIN2	3	
56	PRSS16	7		122	AOR	s		100	KIA 40222	2	
57	APOP	10	NCC	120	CSMD1	19	NCC	101	COLEAI	- -	NCC
51	KDT4	14	1100	124	EMLA	14	add i Maa	191	ACK	4	100
08	KR14	<u>_</u>	NGG	125	EWL4	3	CGU & NUG	192	AGK	4	
59	COL7AI	(NUG	126	ASPM	(193	ASCC3	<u>(</u>	
60	EZH2	5	CGC & NCG	127	NOM1	5		194	CCDC88B	7	
61	TNR	14	NCG	128	CDH8	10		195	TTC17	3	
62	MAGED1	4	NCG	129	PDE8A	3		196	C1orf173	5	
63	VPS13A	8		130	DNAJC14	7		197	RNF40	4	
64	NOTCH2	20	CGC & NCG	131	PDS5A	4		198	TACC3	3	1
65	EGFR	8	CGC & NCG	132	NF1	10	CGC & NCG	199	SPZ1	4	
66	LRP1B	19	CGC & NCG*	133	COL4A5	12		200	LRRK2	7	NCG*
67	KCNJ12	18	NCG	134	SIPA1L3	6					-

Table S3. The driver gene candidates identified in the top 200 genes prioritized by IntDriver on LUSC dataset. Their ranks, gene symbols and mutation frequencies are demonstrated in the table, along with whether the genes are experimentally (CGC & NCG) supported or statistically inferred (NCG). The asterisk * represents that the gene is reported to related with lung squamous cell carcinoma.

Rank	Symbol	MutFree	Benchmarking	Rank	Symbol	MutFree	Benchmarking	Rank	Symbol	MutFree	Benchmarking
1	TP53	172	CGC* & NCG*	68	NBAS	20		135	LBBK2	27	NCG*
2	TTN	145	NCG*	69	MYCBP2	27	NCG	136	ZNE208	20	
2	MUC16	140	NCC*	70	CTNNA2	24	NCC	127	KALDN	27	NCC
3	MUCI6	98	NCG	70	DECS	34	NCG	137	KALKN COL10A1	21	NCG
4	FLG DKUD1	48	NGG*	/1	FEG3	30	NCG	138	DVCE	20	
5	PKHD1	46	NCG*	72	STAB2	34		139	DYSF	23	
6	RYR2	82	NCG	73	ROS1	26	CGC & NCG*	140	EPHB3	16	
7	LRP1B	74	$CGC \& NCG^*$	74	LTBP1	23		141	TLN2	20	
8	LRP2	47	NCG	75	ASH1L	13		142	CCDC141	17	
9	RYR3	57	NCG*	76	SLIT2	19	NCG*	143	HERC2	30	NCG*
10	APOB	41	NCG	77	PAPPA2	40	NCG*	144	SLC8A1	23	
11	MACF1	44	NCG	78	MYH2	31	NCG	145	CHD6	19	NCG
12	USH2A	72	NCG	79	FAT1	32	CGC & NCG	146	FLT1	14	
13	SYNE1	63	NCG	80	BAI3	28	NCG*	147	MUC4	29	NCG
14	DNAH5	43		81	DID01	21	NCG	148	ABID1B	13	CGC & NCG
15	DYNC1H1	30		82	USP34	23		149	LBP1	26	
16	BIRC6	34		83	TNC	20		150	COL5A2	18	
17	MDN1	21		84	DNAU7	25	NCC	151	TDD	20	CCC & NCC
10	VIDDO	47	NCC	04	DECAME 1	33	NCG	150	MVIIO	15	CGC & NCG
10	MANO	47	NCG	80	GEDOO	23	NCG	152	DIVOCO	10	NGC & NCG
19	INAV5	49	NCG	80	CEF 89	4	NGG*	100	FIKSUG	22	NCG
20	VPS13D	30		87	NLRP3	20	NCG	154	UTRN	17	
21	GL13	13	NCG*	88	SH3GL3	1		155	RANBP2	18	
22	SI	37	NCG	89	LRRC7	35	NCG	156	TEP1	15	
23	AHNAK	36	NCG	90	SHANK2	16		157	KIAA1549	20	CGC & NCG
24	FAM135B	48	NCG	91	LYST	19		158	KAT6A	18	CGC & NCG
25	CSMD1	42	NCG	92	SPHKAP	31	NCG*	159	VCAN	23	NCG
26	SPTA1	49	NCG	93	MYH1	23	NCG	160	COL7A1	21	NCG
27	SLITRK3	32	NCG	94	GRM3	23	NCG*	161	FBN1	22	
28	HCN1	42	NCG*	95	COL6A3	20		162	ABCA1	16	NCG
29	CSMD2	38	NCG	96	MYH8	25	NCG	163	UBE2O2	1	
30	ABHGAP5	2		97	DNAH1	14		164	COL4A1	18	
31	NBXN1	33		98	BP1	36	NCG	165	PLEC	23	NCG
32	TNR	35	NCG	99	DMBT1	10		166	MKI67	15	
33	PRPF31	0	nea	100	BDP1	13		167	TRPM6	14	NCG
24	AKAD19		NCC	100	ADAMTSO	19		169	PYDN	20	NCC
25	GVNE9	36	NCG	101	MED10I	10	NCC	160	CDDACD1	14	NCG
26	KIAA1100	20	NCG	102	ANK2	10	NCC	170	DTDDD	20	
30	KIAAI109	21	NGG	103	CADDDO	19	NCG	170	CNENADO	20	NGG*
37	MYO18B	26	NCG	104	GABRB3	18	NCG	171	CNTNAP2	34	NCG
38	CACNAIE	24	NCG	105	ADCY2	19	NCG*	172	ZSCAN4	9	
39	PLXNA4	26		106	NRAP	17		173	NOSI	18	
40	RYR1	34	NCG	107	FLNC	23	NCG	174	CDH18	31	
41	COL11A1	41	NCG*	108	CUL9	19		175	SRCAP	17	
42	ALMS1	29	NCG	109	ABCB5	17	NCG	176	SPEN	14	
43	FAT4	34	CGC & NCG	110	PCNX	18		177	PTPRH	15	
44	VPS28	1		111	PCLO	38	NCG	178	MYLK	14	
45	SCN1A	34		112	EPHA5	18	NCG*	179	UBAP2L	8	
46	CTNND2	28		113	PIK3CA	29	CGC & NCG [*]	180	ADCY8	22	NCG*
47	SH3PXD2A	6		114	SMG1	16		181	PLB1	14	NCG
48	TRRAP	20	CGC & NCG	115	GRIN2B	26		182	PRG4	18	NCG
49	SH3PXD2B	5		116	DST	18	NCG*	183	MXRA5	17	
50	CUBN	38		117	MYT1L	24		184	FMN2	35	NCG
51	SH3KBP1	6		118	NOTCH2	16	CGC & NCG	185	UNC79	21	NCG
52	SH3GLB2	0		119	UNC5A	5		186	MYH4	27	NCG
53	EPHB1	25	NCG*	120	TAFIL	23		187	SLIT3	15	
54	PTPRT	24	NCG	121	ITPR?	16		188	LILBB2	16	
55		24	CCC & NCC	121	TDDM0	14		190	CMVAF	19	NCC*
50	DCUC1	10	NGC & NCG	122	INFNIZ DNE919	15	CCC & NCC	109	CMIAD	10	100
57	EDNO	19	NCC	123	ANF 213 SETD5	10	NCC & NUG	101	NEK	20	NCC
01 E0	I DINZ	29	NCG	124	SE 1 D 3 C1 f1 7 2	0	NOG	102	NUDDOF	20	INCG
28	LAMA4	21	NUG NGG*	125	Ulori173	41		192	NUP205	11	
59	CDH10	38	NCG."	126	HERC1	17		193	PPFIA1	13	
60	CDH12	33	NCG	127	ZNF804A	24	NCG	194	1FT172	13	
61	ANK2	40	NCG	128	LARGE	16		195	MYH13	18	
62	NEB	37	NCG	129	OTOF	18	NCG	196	ZNF33A	15	
63	SMEK1	1		130	GRIN2A	20	CGC & NCG	197	DMXL2	13	
64	OBSCN	33	NCG	131	PRUNE2	17	NCG	198	DNAJC13	16	
65	SRRM2	20		132	OCA2	17		199	FCGBP	19	
66	UBR5	16	$CGC \& NCG^*$	133	POLQ	22		200	ZFHX3	20	CGC & NCG
67	CNTNAP5	38		134	NIPBL	15					

Table S4. The p-values of Fisher's exact test accessing the enrichment significance for NCG [1] benchmarking driver genes of the top 50, 100, 150 and 200 genes selected by IntDriver, NotNet2, MUFFINN-DNmax, MUFFINN-DNsum, DriverNet, NBS(k=3), NBS(k=4), ReMIC.

	BRCA								
Rank	50	100	150	200					
IntDriver	6.00e-25	1.34e-27	6.99e-38	5.36e-40					
HotNet2	1.27e-01	5.81e-03	1.25e-02	4.82e-04					
MUFFINN-DNmax	5.01e-02	1.38e-02	1.69e-03	3.36e-03					
MUFFINN-DNsum	2.77e-01	2.84e-01	1.33e-01	5.10e-02					
DriverNet	1.81e-13	1.72e-14	1.93e-10	7.12e-11					
NBS(k=3)	7.47e-07	2.33e-10	7.66e-18	2.45e-21					
NBS(k=4)	7.47e-07	5.30e-11	6.50e-14	2.24e-19					
ReMIC	1.82e-15	1.34e-27	7.27e-39	2.48e-48					
		KIRC							
Rank	50	100	150	200					
IntDriver	1.89e-14	8.59e-23	1.48e-24	3.06e-29					
HotNet2	5.01e-02	3.10e-02	3.98e-04	6.09e-06					
MUFFINN-DNmax	5.01e-02	5.81e-03	1.25e-02	4.82e-04					
MUFFINN-DNsum	2.77e-01	6.46e-01	7.08e-01	5.89e-01					
DriverNet	1.62e-16	3.04e-15	4.05e-12	2.45e-11					
NBS(k=3)	1.47e-07	2.41e-12	6.50e-14	3.87e-15					
NBS(k=4)	6.88e-10	3.04e-15	6.50e-14	2.67e-16					
ReMIC	1.60e-12	8.59e-23	1.06e-28	3.04e-38					
		LUSC							
Rank	50	100	150	200					
IntDriver	9.92e-19	5.83e-34	7.22e-41	2.04e-46					
HotNet2	7.89e-03	1.15e-03	2.86e-05	1.25e-04					
MUFFINN-DNmax	5.01e-02	1.38e-02	1.25e-02	2.22e-03					
MUFFINN-DNsum	3.92e-01	6.46e-01	9.01e-01	5.15e-01					
DriverNet	1.32e-17	8.59e-23	5.57e-23	2.24e-19					
NBS(k=3)	7.47e-07	5.71e-08	2.18e-09	2.45e-11					
NBS(k=4)	3.52e-06	5.30e-11	1.93e-10	1.81e-13					
ReMIC	1.60e-12	5.18e-16	9.20e-24	3.38e-33					

Table S5. Results of functional enrichment analysis of the top 200 genes identified by IntDriver on BRCA datasets.

Term	Count	Percentage	PValue
hsa04020:Calcium signaling pathway	17	8.67	2.68E-09
hsa04930:Type II diabetes mellitus	9	4.59	2.68E-07
hsa04510:Focal adhesion	15	7.65	8.88E-07
hsa05205:Proteoglycans in cancer	14	7.14	3.72E-06
hsa05213:Endometrial cancer	7	3.57	7.92E-05
hsa05200:Pathways in cancer	17	8.67	9.97E-05
hsa04725:Cholinergic synapse	9	4.59	1.52E-04
hsa05222:Small cell lung cancer	8	4.08	1.75E-04
hsa04919:Thyroid hormone signaling pathway	9	4.59	1.83E-04
hsa04012:ErbB signaling pathway	8	4.08	2.02E-04
hsa04010:MAPK signaling pathway	13	6.63	2.15E-04
hsa05230:Central carbon metabolism in cancer	7	3.57	2.55E-04
hsa04921:Oxytocin signaling pathway	10	5.10	3.48E-04
hsa04713:Circadian entrainment	8	4.08	3.49E-04
hsa04024:cAMP signaling pathway	11	5.61	4.27E-04
hsa05161:Hepatitis B	9	4.59	9.27E-04
hsa04261:Adrenergic signaling in cardiomyocytes	9	4.59	9.69E-04
hsa05221:Acute myeloid leukemia	6	3.06	1.07E-03
hsa05414:Dilated cardiomyopathy	7	3.57	1.10E-03
hsa04512:ECM-receptor interaction	7	3.57	1.32E-03
hsa05215:Prostate cancer	7	3.57	1.41E-03
hsa04210:Apoptosis	6	3.06	1.69E-03
hsa05214:Glioma	6	3.06	2.09E-03
hsa05212:Pancreatic cancer	6	3.06	2.09E-03
hsa04022:cGMP-PKG signaling pathway	9	4.59	2.21E-03
hsa04973:Carbohydrate digestion and absorption	5	2.55	2.71E-03
hsa04151:PI3K-Akt signaling pathway	13	6.63	3.05E-03
hsa05218:Melanoma	6	3.06	3.08E-03
hsa05220:Chronic myeloid leukemia	6	3.06	3.27E-03
hsa05410:Hypertrophic cardiomyopathy (HCM)	6	3.06	4.62E-03
hsa04727:GABAergic synapse	6	3.06	6.65E-03
hsa04911:Insulin secretion	6	3.06	6.65E-03
hsa05223:Non-small cell lung cancer	5	2.55	7.67 E-03
hsa04150:mTOR signaling pathway	5	2.55	8.68E-03
hsa04912:GnRH signaling pathway	6	3.06	8.83E-03
hsa05166:HTLV-I infection	10	5.10	9.50E-03
hsa04611:Platelet activation	7	3.57	9.66E-03
hsa05210:Colorectal cancer	5	2.55	1.09E-02
hsa04530:Tight junction	7	3.57	1.23E-02
hsa04723:Retrograde endocannabinoid signaling	6	3.06	1.35E-02
hsa05146:Amoebiasis	6	3.06	1.63E-02
hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC)	5	2.55	1.73E-02
hsa04260:Cardiac muscle contraction	5	2.55	2.08E-02
hsa04724:Glutamatergic synapse	6	3.06	2.17E-02
hsa05100:Bacterial invasion of epithelial cells	5	2.55	2.36E-02
hsa05145:Toxoplasmosis	6	3.06	2.48E-02
hsa04925:Aldosterone synthesis and secretion	5	2.55	2.67 E-02
hsa04666:Fc gamma R-mediated phagocytosis	5	2.55	3.00E-02
hsa05010:Alzheimer's disease	7	3.57	3.03E-02
hsa04923:Regulation of lipolysis in adipocytes	4	2.04	4.35E-02
hsa04066:HIF-1 signaling pathway	5	2.55	4.85E-02
hsa04070:Phosphatidylinositol signaling system	5	2.55	4.85E-02
hsa04924:Renin secretion	4	2.04	6.05 E-02
hsa04620:Toll-like receptor signaling pathway	5	2.55	6.14E-02
hsa04931:Insulin resistance	5	2.55	6.48E-02
hsa04664:Fc epsilon RI signaling pathway	4	2.04	6.99E-02
hsa04726:Serotonergic synapse	5	2.55	7.02E-02
hsa00562:Inositol phosphate metabolism	4	2.04	7.74E-02
hsa04270:Vascular smooth muscle contraction	5	2.55	8.57E-02
hsa04071:Sphingolipid signaling pathway	5	2.55	8.78E-02
hsa04722:Neurotrophin signaling pathway	5	2.55	8.78E-02
has 04150 AMDV sime line and have	5	2 55	0.20F 02

Term	Count	Percentage	PValue
hsa04512:ECM-receptor interaction	7	3.52	1.32E-03
hsa04510:Focal adhesion	10	5.03	2.31E-03
hsa05200:Pathways in cancer	14	7.04	3.17E-03
hsa05146:Amoebiasis	7	3.52	3.61E-03
hsa04921:Oxytocin signaling pathway	8	4.02	6.58E-03
hsa05222:Small cell lung cancer	6	3.02	6.65E-03
hsa05416:Viral myocarditis	5	2.51	8.17E-03
hsa05332:Graft-versus-host disease	4	2.01	1.08E-02
hsa04066:HIF-1 signaling pathway	6	3.02	1.19E-02
hsa05230:Central carbon metabolism in cancer	5	2.51	1.22E-02
hsa05330:Allograft rejection	4	2.01	1.48E-02
hsa04940:Type I diabetes mellitus	4	2.01	2.07E-02
hsa04151:PI3K-Akt signaling pathway	11	5.53	2.23E-02
hsa05166:HTLV-I infection	9	4.52	2.69E-02
hsa04911:Insulin secretion	5	2.51	3.11E-02
hsa05320:Autoimmune thyroid disease	4	2.01	3.61E-02
hsa04977:Vitamin digestion and absorption	3	1.51	3.75E-02
hsa04120:Ubiquitin mediated proteolysis	6	3.02	4.31E-02
hsa04713:Circadian entrainment	5	2.51	4.41E-02
hsa05206:MicroRNAs in cancer	9	4.52	4.62E-02
hsa04514:Cell adhesion molecules (CAMs)	6	3.02	4.89E-02
hsa04320:Dorso-ventral axis formation	3	1.51	5.45E-02
hsa05205:Proteoglycans in cancer	7	3.52	6.16E-02
hsa05214:Glioma	4	2.01	6.28E-02
hsa05211:Renal cell carcinoma	4	2.01	6.28E-02
hsa04931:Insulin resistance	5	2.51	6.48E-02
hsa05310:Asthma	3	1.51	6.58E-02
hsa00020:Citrate cycle (TCA cycle)	3	1.51	6.58E-02
hsa04115:p53 signaling pathway	4	2.01	6.75E-02
hsa05140:Leishmaniasis	4	2.01	7.74E-02
hsa05145:Toxoplasmosis	5	2.51	8.37 E-02
hsa04612:Antigen processing and presentation	4	2.01	9.07E-02

Table S6. Results of functional enrichment analysis of the top 200 genes identified by IntDriver on KIRC datasets.

Table S7.	Results of functional	enrichment	analysis of the	e top 200	genes identified	by IntDriver	on LUSC datasets.
-----------	-----------------------	------------	-----------------	-----------	------------------	--------------	-------------------

Term	Count	Percentage	PValue
hsa04510:Focal adhesion	14	7.18	4.07E-06
hsa04020:Calcium signaling pathway	11	5.64	1.59E-04
hsa04921:Oxytocin signaling pathway	10	5.13	2.98E-04
hsa04713:Circadian entrainment	8	4.10	3.07E-04
hsa04611:Platelet activation	9	4.62	3.90E-04
hsa04512:ECM-receptor interaction	7	3.59	1.19E-03
hsa04974:Protein digestion and absorption	7	3.59	1.26E-03
hsa04530:Tight junction	8	4.10	2.68E-03
hsa04724:Glutamatergic synapse	7	3.59	4.67E-03
hsa04970:Salivary secretion	6	3.08	6.40E-03
hsa05146:Amoebiasis	6	3.08	1.50E-02
hsa04024:cAMP signaling pathway	8	4.10	1.88E-02
hsa04151:PI3K-Akt signaling pathway	11	5.64	1.96E-02
hsa04015:Rap1 signaling pathway	8	4.10	2.51E-02
hsa04022:cGMP-PKG signaling pathway	7	3.59	2.64E-02
hsa05222:Small cell lung cancer	5	2.56	2.91E-02
hsa04360:Axon guidance	6	3.08	3.02E-02
hsa05014:Amyotrophic lateral sclerosis (ALS)	4	2.05	3.10E-02
hsa05213:Endometrial cancer	4	2.05	3.43E-02
hsa04977:Vitamin digestion and absorption	3	1.54	3.61E-02
hsa04923:Regulation of lipolysis in adipocytes	4	2.05	4.13E-02
hsa04750:Inflammatory mediator regulation of TRP channels	5	2.56	4.55E-02
hsa04915:Estrogen signaling pathway	5	2.56	4.69E-02
hsa05205:Proteoglycans in cancer	7	3.59	5.68E-02
hsa04720:Long-term potentiation	4	2.05	6.19E-02
hsa04725:Cholinergic synapse	5	2.56	6.61E-02
hsa04918:Thyroid hormone synthesis	4	2.05	7.13E-02
hsa04919:Thyroid hormone signaling pathway	5	2.56	7.14E-02
hsa04971:Gastric acid secretion	4	2.05	7.87E-02
hsa05010:Alzheimer's disease	6	3.08	8.10E-02
hsa05200:Pathways in cancer	10	5.13	9.00E-02

References

- [1] Omer An, Vera Pendino, Matteo DAntonio, Emanuele Ratti, Marco Gentilini, and Francesca D Ciccarelli. Ncg 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. *Database*, 2014:bau015, 2014.
- [2] P Andrew Futreal, Lachlan Coin, Mhairi Marshall, Thomas Down, Timothy Hubbard, Richard Wooster, Nazneen Rahman, and Michael R Stratton. A census of human cancer genes. *Nature Reviews Cancer*, 4(3):177–183, 2004.