Electronic Supplementary Material (ESI) for MedChemComm. This journal is © The Royal Society of Chemistry 2017

#### **Supplementary Information**

# Synthesis and biological evaluation of N-*alkyl naphthoimidazoles* derived from β-lapachone against *Trypanosoma* cruzi bloodstream trypomastigotes

Ari Miranda da Silva,<sup>a,b</sup> Leonardo Araújo,<sup>a</sup> Ana Cristina Bombaça,<sup>c</sup> Rubem F. S. Menna-

Barreto,<sup>c</sup> Claudio Eduardo Rodrigues-Santos,<sup>a</sup> Aurélio B. Buarque Ferreira,<sup>a</sup> and Solange L. de Castro<sup>c,\*</sup>

<sup>a</sup>Programa de Pós-Graduação em Química, UFRRJ, 23890-000, Seropédica, RJ, Brazil

<sup>b</sup>Instituto de Pesquisas em Produtos Naturais, UFRJ, 21944-970, Rio de Janeiro, RJ, Brazil

<sup>c</sup>Laboratório de Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, 21045-900, Rio de Janeiro, RJ, Brazil. Email: <u>solange@ioc.fiocruz.br</u>; Tel: +55 21 25621391

#### Contents

- 1. Spectral data of compounds 5 to 26
- 2. NMR spectra of compounds 5 to 26
- 3. Discrimination between N1- alkyl and N3-alkyl regioisomers using NMR data.
- 4. Structure/trypanocidal activity correlation

#### 1. Spectral data of of compounds 5 to 26

**6,6-Dimethyl-2-(2-thienyl)-3,4,5,6-tetrahydrobenzo**[**7,8**]**chromeno**[**5,6-***d*]**imidazole** (**5**) Using 0.5 mmol 2-thiophenecarboxaldehyde, **5** was obtained in 16% yield (m.p. 183-185°C). <u>IR (KBr) cmr</u> <sup>1</sup>: 3421, 3212, 3104, 3075, 2974, 2939, 2927, 2850, 1652, 1616, 1604, 1585, 1459, 1444, 1429, 1383, 1367, 1259, 1240, 1159, 1120, 1053, 879, 852, 771, 721, 709. <u><sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ</u>: 1.48 (s, 6H), 1.98 (t, 2H, J = 6.7 Hz), 3.09 (t, 2H, J = 6.7 Hz), 7.16 (dd, 1H, J = 3.7 and 4.9 Hz), 7.46-7.50 (m, 2H), 7.59 (t, 1H, J = 7.6 Hz), 7.85 (dd, 1H, J = 1.1 and 3.7 Hz), 8.29 (d, 1H, J = 8.3 Hz), 8.44 (d, 1H, J = 8.1 Hz). <u><sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 17.4, 26.7, 31.7, 75.3, 101.7, 121.9, 122.6, 124.0, 124.5, 125.2, 126.7, 128.0, 128.4, 129.7, 130.6, 147.8, 156.7, 147.4. <u>MS (m/z; (%))</u>: 334 (50), 278 (100). <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 335.1214 [M+H]<sup>+</sup>, C<sub>20</sub>H<sub>19</sub>N<sub>2</sub>OS. Calculated: 335.1218.

#### 2-(2,6-Dichlorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole

(6) Using 0.5 mmol 2,6-dichlorobenzaldehyde, 6 was obtained in 31% yield (m.p. 159-162°C). <u>IR</u> (<u>KBr</u>) cm<sup>-1</sup>: 3386, 3070, 3012, 2973, 2927, 2869, 2850, 1631, 1602, 1587, 1560, 1545, 1521, 1481, 1464, 1433, 1379, 1369, 1342, 1333, 1321, 1284, 1259, 1242, 1194, 1161, 1120, 1063, 1053, 968, 953, 883, 791, 777, 766, 739, 719, 663, 648. <u><sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)</u>  $\overline{o}$ : 1.42 (s, 6H), 1.87 (t, 2H, J = 6.6 Hz), 2.99 (bs, 2H), 7.22-7.28 (m, 3H), 7.39-7.41 (dd, 2H, J = 3.2 and 6.2 Hz), 8.28-8.30 (m, 2H). <u><sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)</u>  $\overline{o}$ : 18.8, 26.8, 32.1, 74.5, 121.5, 122.6, 123.9, 126.0, 128.1, 130.3, 131.2, 136.5. <u>MS (m/z, (%))</u>: 397 (100). TOF MS ES+ (MeOH-H2O-0.1%-AcOH): m/z: 397.0869 [M+H]+, C<sub>20</sub>H<sub>21</sub>Cl<sub>2</sub>N<sub>2</sub>O. Calculated: 397.0874.

#### 2-(2,4-Dichlorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole

(7) Using 0.5 mmol 2,4-dichlorobenzaldehyde, 7 was obtained in 81% yield (m.p. 218-220°C). <u>IR</u> (<u>KBr</u>) cm<sup>-1</sup>: 3446, 3147, 3066, 3052, 3016, 2973, 2950, 2929, 2850, 2821, 1629, 1600, 1587, 1554, 1520, 1469, 1458, 1444, 1425, 1382, 1376, 1369, 1342, 1333, 1317, 1282, 1266, 1259, 1240, 1159, 1144, 1119, 1105, 1061, 1047, 955, 879, 864, 827, 806, 769, 735, 717, 646, 629. <u><sup>1</sup>H NMR</u> (400 MHz, DMSO-d<sub>6</sub>)  $\overline{\delta}$ : 1.43 (s, 6H), 1.97 (t, 2H, J = 6.6 Hz), 3.02 (t, 2H, J = 6.5 Hz), 7.46 (t, 1H, J = 7.6 Hz), 7.58 (t, 1H, J = 7.1 Hz), 7.64 (dd, 1H, J = 2.0 and 8.3 Hz), 7.86 (d, 1H, J = 2.0 Hz), 7.89 (d, 1H, J = 8.4 Hz), 8.17 (d, 1H, J = 8.3 Hz), 8.37 (d, 1H, J = 8.0 Hz). <u><sup>13</sup>C NMR (100 MHz, DMSO-d)</u>  $\overline{\delta}$ : 18.7, 26.7, 32.1, 74.7, 122.8, 124.3, 126.3, 127.3, 128.0, 130.3, 130.4, 132.5, 135.1. <u>MS (m/z, (%))</u>: 397 (100). <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 397.0869 [M+H]<sup>+</sup>, C<sub>20</sub>H<sub>21</sub>Cl<sub>2</sub>N<sub>2</sub>O. Calculated: 397.0874.

**6,6-Dimethyl-2-(1-naphthyl)-3,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazole (8) Using 0.5 mmol 1-naphthaldehyde, **8** was obtained in 95% yield (m.p. 210-213°C). <u>IR (KBr) cm<sup>-1</sup></u>: 3411, 3050, 3016, 2972, 2929, 2875, 2848, 1635, 1618, 1587, 1541, 1516, 1502, 1444, 1429, 1385, 1367, 1340, 1323, 1282, 1261, 1236, 1159, 1146, 1122, 1074, 1057, 1030, 1016, 968, 951, 941, 883, 800, 773. <u><sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ</u>: 1.50 (s, 6H), 2.04 (t, 2H, J = 6.6 Hz), 3.05 (bs, 2H), 7.45-7.52 (m, 1H), 7.53-7.64 (m, 4H), 7.87 (d, 1H, J = 6.8 Hz), 7.94 (m, 2H), 8.35 (d, 1H, J = 8.4 Hz), 8.80 (bs, 1H, J = xx Hz).<u><sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 18.9, 26.8, 32.2, 74.5, 121.1, 122.8, 123.8, 124.0, 125.0, 126.1, 126.2, 126.3, 127.2, 127.4, 128.4, 129.9, 131.4, 134.0. <u>MS (m/z, (%))</u>: 379 (M<sup>+1</sup>, 100), 336 (7.5), 323 (42.5). TOF MS ES+ (MeOH-H2O-0.1%-AcOH): m/z: 379.1816 [M+H]+, C<sub>26</sub>H<sub>25</sub>N<sub>2</sub>O. Calculated: 379.1810.

#### 4-(6,6-Dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromene[5,6-d]imidazol-2-yl)-2-methoxy-

**phenol (9)** Using 0.5 mmol vanillin, **9** was obtained in 54% yield (m.p. 196199°C). <u>IR (KBr) cm<sup>-1</sup></u>: 3421, 3178, 3072, 2971, 2927, 2848, 1655, 1610, 1587, 1549, 1529, 1508, 1493, 1464, 1383, 1367, 1346, 1323, 1282, 1259, 1242, 1223, 1161, 1144, 1120, 1055, 1030, 980, 970, 953, 881, 870, 822, 789, 766, 729, 719, 704, 669, 650. <u>1H NMR (500 MHz, acetone-D<sub>6</sub>) δ</u>: 1.45 (s, 6H), 1.99 (t, 2H, J = 6.7 Hz), 3.11 (t, 2H, J = 6.7 Hz), 3.93 (s, 3H), 6.94 (d, 1H, J = 8.2 Hz), 7.41 (t, 1H, J = 8.1 Hz), 7.51 (t, 1H, J = 7.9 Hz), 7.76 (dd, 1H, J = 1.9 and 7.9 Hz), 7.97 (d, 1H, J = 1.6 Hz), 8.22 (d, 1H, J = 8.3 Hz), 8.51 (d, 1H, J = 8.1 Hz). <u><sup>13</sup>C NMR (125 MHz, acetone-D<sub>6</sub>) δ</u>: 19.7, 27.0, 32.8, 56.6, 75.2, 105.0, 110.9, 116.2, 120.6, 122.3, 123.4, 124.4, 124.5, 126.7, 146.0, 148.8, 149.1, 149.8. <u>MS (m/z, (%))</u>: 374 (100), 279 (10). <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 375.1713 [M+H]<sup>+</sup>, C<sub>20</sub>H<sub>21</sub>Cl<sub>2</sub>N<sub>2</sub>O. Calculated: 375.1708.

**6,6-Dimethyl-3,4,5,6-tetrahydrobenzo**[7,8]chromene[5,6-*d*] imidazole (10) Using 3 mmol of paraformaldehyde, **10** was obtained in 85% yield (m.p. 296-298°C). <u>UV (CH<sub>3</sub>CN; (ε))</u>  $\lambda_{max}$  = 332 nm (2700). <u>IR (KBr) cm<sup>-1</sup></u>: 3409, 3144, 3083, 3010, 2973, 2924, 2844, 1666, 1652, 1605, 1588, 1486, 1451, 1367, 1257, 1161, 1120, 1056, 948, 770. <u><sup>1</sup>H-NMR (400 MHz, MeOD) δ</u>: 1.46 (s, 6H), 2.00 (t, 2H, J = 6.0 Hz), 3.04 (t, 2H, J = 8.0 Hz), 7.41 (t, 1H, J = 8.0 Hz), 7.51 (t, 1H, J = 8.0 Hz), 8.08 (s, 1H), 8.21 (d, 1H, J = 12.0 Hz), 8.29 (d, 1H, J = 8.0 Hz). <u><sup>13</sup>C-NMR (100 MHz, MeOD) δ</u>: 19.8, 27.1, 33.3, 75.7, 106.0, 122.0, 123.8, 124.9, 127.2, 139.2, 146.7. <u>EI MS-70eV (*m*/*z*, (%))</u>: 252 (100), 196 (80). <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m*/*z*: 253.1262 [M+H]<sup>+</sup>, C<sub>16</sub>H<sub>17</sub>N<sub>2</sub>O. Calculated: 253.1341).

**1-Propyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (11): m.p. 134-140 °C. <u><sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ</u>: 1.04 (t, 3H), 1.48 (s, 6H), 2.01 (t, 2H), 2.01-2.07 (m, 4H), 3.21 (t, 2H, J = 6.6 Hz), 4.52 (t, 2H, J = 7.1 Hz), 7.50 (t, 1H, J = 7.4 Hz), 7.9 (s, 1H), 8.11 (d, 1H, J = 8.2 Hz), 8.43 (d, 1H, J = 8.2 Hz). <u><sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ</u>: 11.1, 18.4, 23.4, 26.8, 32.4, 49.5, 74.5, 108.2, 119.8, 121.0, 121.3 (2C), 123.4, 123.5, 124.4, 125.8, 141.5, 144.7. <u>TOF MS ES+</u> (<u>MeOH-H<sub>2</sub>O-0.1%-AcOH</u>): *m/z*: 295.1801 [M+H]<sup>+</sup>, C<sub>19</sub>H<sub>22</sub>N<sub>2</sub>O. Calculated: 295.1805.

**3-Propyl-6,6-dimethyl-3,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (12): m.p. 159-163°C. <u>1H-NMR (500 MHz, CDCl<sub>3</sub>) δ</u>: 1.02 (t, 3H), 1.48 (s, 6H), 1.90-1.95 (m, 2H), 2.00 (t, 2H, J = 6.6 Hz), 3.21 (t, 2H, J = 6.6 Hz), 4.36 (t, 2H, J = 7.3 Hz), 7.47 (t, 1H, J = 7.6 Hz), 7.60 (t, 1H, J = 7.4 Hz), 7.80 (s, 1H), 8.29 (d, 1H, J = 8.5 Hz), 8.55 (d, 1H, J = 8.2 Hz). <u>13C-NMR (125 MHz, CDCl<sub>3</sub>)</u> <u>δ</u>: 11.2, 20.0, 25.8, 26.5, 32.4, 48.6, 73.6, 101.6, 121.3, 122.4, 123.5 (2C), 123.9, 126.5, 128.8, 133.4, 140.5, 145.9. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 295.1809 [M+H]<sup>+</sup>, C<sub>19</sub>H<sub>22</sub>N<sub>2</sub>O. Calculated: 295.1805.

**1-Butyl-6,6-dimethyl-3,4,5,6- tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (13): m.p. -, oil. <u>1H-NMR (400 MHz, CDCl<sub>3</sub>) δ</u>: 1.00 (t, 3H), 1.43-1.49 (m, 2H), 1.48 (s, 6H), 1.98-2.02 (m, 4H), 3.22 (t, 2H, J = 7.8 Hz), 4.59 (t, 2H, J = 7.2 Hz), 7.51 (t, 1H, J = 7.2 Hz), 7.59 (t, 1H, J = 8.16 Hz), 8.02 (s, 1H), 8.13 (d, 1H, J = 8.28 Hz), 8.44 (d, 1H, J = 7.8 Hz). <u>13C-NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 13.6, 18.5, 19.8, 26.7, 32.1, 32.3, 47.9, 74.7, 107.6, 119.9, 120.8, 121.3, 123.5, 123.8, 124.4, 126.0, 140.4, 141.3, 145.1. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 309.1959 [M+H]<sup>+</sup>, C<sub>20</sub>H<sub>24</sub>N<sub>2</sub>O. Calculated: 309.1961. **3-Butyl-6,6-dimethyl-3,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (14): m.p. 104-107 °C. <u><sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)</u>  $\delta$ : 1.00 (t, 3H), 1.40-1.46 (m, 2H), 1.48 (s, 6H), 1.84-1.91 (m, 2H), 2.00 (t, 2H, J = 6.8 Hz), 3.19 (t, 2H, J = 6.7 Hz), 4.40 (t, 2H, J = 7.3 Hz), 7.48 (t, 1H, J = 7.7 Hz), 7.61 (t, 1H, J = 8.0 Hz), 7.92 (s, 1H), 8.29 (d, 1H, J = 8.3 Hz), 8.58 (d, 1H, J = 8.0 Hz). <u><sup>13</sup>C-NMR</u> (<u>100 MHz, CDCl<sub>3</sub>)</u>  $\delta$ : 13.7, 19.6, 19.9, 26.5, 32.3, 34.5, 47.0, 73.7, 101.5, 121.4, 122.5, 123.7, 124.2, 125.9, 126.7, 128.7, 132.3, 140.0, 146.2. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: m/z: 309.1960 [M+H]<sup>+</sup>, C<sub>20</sub>H<sub>24</sub>N<sub>2</sub>O. Calculated: 309.1961.

**1-Pentyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (15): m.p. 72-74°C, <u>1H-NMR (400 MHz, CDCl<sub>3</sub>) δ</u>: 0.93 (t, 3H, J = 6.9 Hz), 1.37-1.,45 (m, 4H), 1.48 (s, 6H), 1.99-2.07 (m, 4H), 3.25 (t, 2H, J = 6.6 Hz), 4.68 (t, 2H, J = 7.1 Hz), 7.57 (t, 1H, J = 7.7 Hz), 7.64 (t, 1H, J = 7.7 Hz), 8.13 (d, 1H, J = 8.3 Hz), 8.45 (d, 1H, J = 8.3 Hz), 8.58 (s, 1H). <u>13C-NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 13.9, 18.7, 22.2, 26.7, 28.6, 29.6, 32.0, 48.9, 75.2, 106.0, 119.9, 120.1, 121.0, 123.7, 124.6, 124.9, 126.7, 136.9, 139.8, 146.4. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z:* 323.2125 [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>26</sub>N<sub>2</sub>O. Calculated: 323.2118.

**3-Pentyl-6,6-dimethyl-3,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (16): m.p. 126-130°C. <u><sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)</u>  $\delta$ : 0.93 (t, 3H, J = 6.9 Hz), 1.38-1.42 (m, 4H), 1.48 (s, 6H), 1.91-1.94 (m, 2H), 2.00 (t, 2H, J = 6.6 Hz), 3.17 (t, 2H, J = 6.8 Hz), 4.50 (t, 2H, J = 7.3 Hz), 7.52 (t, 1H, J = 7.3 Hz), 7.65 (t, 1H, J = 8.0 Hz), 8.29 (d, 1H, J = 8.3 Hz), 8.43 (s, 1H), 8.66 (d, 1H, J = 8.0 Hz). <u><sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)</u>  $\delta$ : 13.9, 19.4, 22.3, 26.5, 28.7, 32.0, 32.1, 47.9, 74.1, 101.2, 122.0, 122.6, 124.1, 124.3, 125.1, 127.3, 128.3, 129.0, 19.0, 147.1. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 323.2120 [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>26</sub>N<sub>2</sub>O. Calculated: 323.2118.

**1-Hexyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-d]imidazol (17): m.p. 125-128°C. <u>1H-NMR (400 MHz, CDCl<sub>3</sub>) δ</u>: 0.90 (t, 3H), 1.27-1.45 (m, 6H), 1.48 (s, 6H), 2.01 (bs, 4H), 3.22 (bs, 2H), 4.57 (t, 2H, J = 6.5 Hz), 7.51 (t, 1H, J = 7.5 Hz), 7.59 (t, 1H, J = 7.1 Hz), 7.98 (s, 1H), 8.12 (d, 1H, J = 8.0 Hz), 8.44 (d, 1H, J = 8.3 Hz). <u>13C-NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 14.0, 18.5, 22.5, 26.3, 26.7 (2C), 30.0, 31.3, 32.3, 48.2, 74.7, 107.6, 119.9, 120.8, 121.2, 123.5, 123.8, 124.5, 126.0, 140.3, 141.2, 145.2. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 337.2283 [M+H]<sup>+</sup>,  $C_{22}H_{28}N_2O$ . Calculated: 337.2274.

**3-Hexyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[**7,8**]**chromeno**[**5,6-d**]**imidazol** (**18**): m.p. 126-129°C. <u><sup>1</sup>H-NMR</sub> (400 MHz, CDCl<sub>3</sub>) δ</u>: 0.91 (t, 3H, J = 6.9 Hz), 1.32-1.42 (m, 6H), 1.49 (s, 6H), 1.85-1.92 (m, 2H), 2.01 (t, 2H, J = 6.6 Hz), 3.20 (t, 2H, J = 6.7 Hz), 4.38 (t, 2H, J = 7.3 Hz), 7.47 (t, 1H, J = 7.5 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.79 (s, 1H), 8.29 (d, 1H, J = 8.3 Hz), 8.55 (d, 1H, J = 8.0 Hz). <u><sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 14.0, 19.6, 22.5, 26.4, 26.5 (2C), 31.4, 32.5, 32.4, 47.0, 73.6, 101.6, 121.3, 122.4, 123.6 (2C), 123.9, 126.5, 128.8, 133.4, 140.4, 145.9. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 337.2280 [M+H]<sup>+</sup>, C<sub>22</sub>H<sub>28</sub>N<sub>2</sub>O. Calculated: 337.2283. **1-Heptyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (19): m.p. 154-160°C. <u><sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)</u>  $\delta$ : 0.89 (t, 2H, J = 6.6 Hz), 1.25-1.32 (m, 4H), 1.34-1.,37 (m, 2H), 1.40-1.44 (m, 2H), 1.48 (s, 6H), 2.01 (t, 2H, J = 6.8 Hz), 3.21 (t, 2H, J = 6.6 Hz), 4.57 (t, 2H, J = 7.1 Hz), 7.49 (t, 1H, J = 7.6 Hz), 7.57 (t, 1H, J = 7.6 Hz), 7.85 (s, 1H), 8.12 (d, 1H, J = 8.5 Hz), 8.43 (d, 1H, J = 8.2 Hz). <u><sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)</u>  $\delta$ : 14.0, 18.5, 22.6, 26.7 (2C), 29.7, 31.6 (2C), 32.4, 48.1, 74.6, 107.7, 119.9, 120.8, 123.4, 123.7, 125.8, 141.4, 145.0. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 351.2444 [M+H]<sup>+</sup>, C<sub>23</sub>H<sub>30</sub>N<sub>2</sub>O. Calculated: 351.2431.

**3-Heptyl-6,6-dimethyl-3,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (20): m.p. 115-121°C. <u>1H-NMR (500 MHz, CDCl<sub>3</sub>) δ</u>: 0.89 (t, 3H, J = 6.5 Hz), 1.25-1.44 (m, 8H), 1.48 (s, 6H), 1.85-1.93 (m, 2H), 2.01 (t, 2H, J = 6.5 Hz), 3.21 (t, 2H, J = 6.5 Hz), 4.48 (t, 2H, J = 7.2 Hz), 7.46 (t, 1H, J = 7.4 Hz), 7.59 (t, 1H, J = 7.2 Hz), 7.79 (s, 1H), 8.28 (d, 1H, J = 8.2 Hz), 8.51 (d, 1H, J = 7.9 Hz). <u>1<sup>3</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ</u>: 14.1, 19.6, 22.5, 26.5, 26.7 (2C), 31.6, 32.3, 32.4, 47.5, 73.8, 101.5, 121.4, 122.5, 124.4, 128.7, 131.7, 140.0, 146.4. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 351.2429 [M+H]<sup>+</sup>, C<sub>23</sub>H<sub>30</sub>N<sub>2</sub>O. Calculated: 351.2431.

**1-Octyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (21): m.p. 120-125°C. <u><sup>1</sup>H-NMR</u> (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 0.89 (t, 3H), 1.25-1.45 (m, 10H), 1.48 (s, 6H), 1.97-2.05 (m, 4H), 3.22 (t, 2H, J = 6.8 Hz), 4.56 (t, 2H, J = 7.3 Hz), 7.51 (t, 1H, J = 7.6 Hz), 7.59 (t, 1H, J = 8.2 Hz), 7.92 (s, 1H), 8.12 (d, 1H, J = 8.3 Hz), 8.44 (d, 1H, J = 8.0 Hz). <u><sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ </u>: 14.1, 18.5, 22.6, 26.6, 26.8, 29.1, 29.1, 30.1, 31.7, 32.4, 48.1, 74.6, 107.9, 119.9, 120.83, 121.2, 123.4, 123.7, 124.5, 125.9, 140.8, 141.4, 145.0. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 365.2588 [M+H]<sup>+</sup>, C<sub>24</sub>H<sub>32</sub>N<sub>2</sub>O. Calculated: 365.2587.

**3-Octyl-6,6-dimethyl-3,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-d]imidazol (22): m.p. 204-209°C. <u><sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)</u>  $\overline{0}$ : 0.89 (t, 3H, J = 6.8 Hz), 1.25-1.43 (m, 10H), 1.48 (s, 6H), 1.87-1.95 (m, 2H), 2.00 (t, 2H, J = 6.6 Hz), 3.17 (t, 2H, J = 6.6.7 Hz), 4.48 (t, 2H, J = 7.4 Hz), 7.52 (t, 1H, J = 7.6 Hz), 7.65 (t, 1H, J = 7.0 Hz), 8.29 (d, 1H, J = 8.0 Hz), 8.35 (s, 1H), 8.67 (d, 1H, J = 8.3 Hz). <u><sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)</u>  $\overline{0}$ : 14.1, 19.4, 22.6, 26.5, 26.6, 29.1, 29.1, 31.7, 32.1, 32.2, 48.1, 74.1, 101.1, 122.0, 122.6, 124.2, 125.2, 127.4, 128.2 (2C), 129.8, 138.7, 147.3. <u>TOF MS ES+</u> (MeOH-H<sub>2</sub>O-0.1%-AcOH): *m/z*: 365.576 [M+H]<sup>+</sup>, C<sub>24</sub>H<sub>32</sub>N<sub>2</sub>O. Calculated: 365.2587

**1-Nonyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-d]imidazol (23): m.p. 95-96°C. <u>1H-NMR (400 MHz, CDCl<sub>3</sub>) δ</u>: 0.89 (t, 3H, J = 6.9 Hz), 1.24-1.32 (m, 8H), 1.33-1.38 (m, 2H), 1.39-1.45 (m, 2H), 1.48 (s, 6H), 1.97-2.03 (m, 4H), 3.21 (t, 2H, J = 6.6 Hz), 4.54 (t, 2H, J = 7.1 Hz), 7.50 (t, 1H, J = 7.4 Hz), 7.58 (t, 1H, J = 7.1 Hz), 7.88 (s, 1H), 8.13 (d, 1H, J = 8.3 Hz), 8.43 (d, 1H, J = 8.1 Hz). <u>13C-NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 14.1, 18.5, 22.6, 26.6, 26.8 (2C), 30.2, 31.8, 32.4, 48.0,

74.5, 108.0, 119.8, 120.9, 121.3, 123.4, 123.5, 124.5, 125.8, 141.2, 141.6, 144.8. <u>TOF MS ES+</u> (<u>MeOH-H<sub>2</sub>O-0.1%-AcOH</u>): *m/z*: 379.2736 [M+H]<sup>+</sup>, C<sub>26</sub>H<sub>34</sub>N<sub>2</sub>O. Calculated: 379.2744.

**3-Nonyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-d]imidazol (24): m.p. 144-147°C. <u>1H-NMR (400 MHz, CDCl<sub>3</sub>)</u>  $\delta$ : 0.89 (t, 3H, J = 6.8 Hz), 1.22-1.42 (m, 12H), 1.48 (s, 6H),1.85-1.92 (m, 2H), 2.01 (t, 2H, J = 6.8 Hz), 3.21 (t, 2H, J = 6.7 Hz), 4.38 (t, 2H, J = 7.3 Hz), 7.47 (t, 1H, J = 7.2 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.79 (s, 1H), 8.29 (d, 1H, J = 8.5 Hz), 8.55 (d, 1H, J = 8.0 Hz). <u>13C-NMR (100 MHz, CDCl<sub>3</sub>)</u>  $\delta$ : 14.1, 19.6, 22.6, 26.5, 26.7, 29.2, 29.4, 31.8, 32.4, 32.6, 47.1, 73.6, 101.6, 121.3, 122.4, 123.6, 124.0, 126.5, 128.8, 133.4, 140.4, 145.9. <u>TOF MS</u> <u>ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 379.2751 [M+H]<sup>+</sup>, C<sub>26</sub>H<sub>34</sub>N<sub>2</sub>O. Calculated: 379.2744.

**1-Dodecyl-6,6-dimethyl-1,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-*d*]imidazol (25): m.p. 75-77°C. <u><sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ</u>: 0.90 (t, 3H, J = 6.8 Hz), 1.26-1.43 (m, 18H), 1.48 (s, 6H), 1.97-2.01 (m, 4H), 3.21 (t, 2H, J = 6.6 Hz), 4.54 (t, 2H, J = 7.1 Hz), 7.50 (t, 1H, J = 7.5 Hz), 7.57 (t, 1H, J = 7.5 Hz), 7.86 (s, 1H), 8.12 (d, 1H, J = 8.3 Hz), 8.43 (d, 1H, J = 8.3 Hz). <u><sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 14.1, 18.4, 22.7, 26.6, 26.8 (2C), 29.1, 30.1, 31.9, 32.4, 39.3, 47.9, 74.5, 108.1, 119.8, 120.9, 123.4, 123.5, 125.8, 141.3, 141.7, 144.8. <u>TOF MS ES+ (MeOH-H<sub>2</sub>O-0.1%-AcOH)</u>: *m/z*: 421.3204 [M+H]<sup>+</sup>, C<sub>29</sub>H<sub>40</sub>N<sub>2</sub>O. Calculated: 421.3213.

**3-Dodecyl-6,6-dimethyl-3,4,5,6-tetrahydrobenzo**[7,8]chromeno[5,6-d]imidazol (26): m.p. 95-98°C. <u>1H-NMR (400 MHz, CDCl<sub>3</sub>) δ</u>: 0.90 (t, 3H, J = 6.8 Hz), 1.26-1.42 (m, 18H), 1.48 (s, 6H), 1.84-1.91 (m, 2H), 2.00 (t, 2H, J = 6.6 Hz), 3.20 (t, 2H, J = 6.6 Hz), 4.38 (t, 2H, J = 7.3 Hz), 7.47 (t, 1H, J = 7.1 Hz), 7.60 (t, 1H, J = 7.3 Hz), 7.84 (s, 1H), 8.29 (d, 1H, J = 8.3 Hz), 8.56 (d, 1H, J = 8.0 Hz). <u>1<sup>3</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) δ</u>: 14.1, 19.6, 22.7, 26.5 (2C), 26.7, 29.2, 29.3, 29.5, 29.6, 31.9, 32.3, 32.5, 47.2, 73.7, 101.5, 121.4, 122.4, 124.1, 126.5, 128.7, 132.9, 140.2, 146.0. <u>TOF MS ES+</u> (MeOH-H<sub>2</sub>O-0.1%-AcOH): *m/z*: 4213217 [M+H]<sup>+</sup>, C<sub>29</sub>H<sub>40</sub>N<sub>2</sub>O. Calculated: 421.3213.

## 2. NMR spectra of compounds 5 to 26

## 2.1. Compound 5:



Spectrum 1: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 5.



Spectrum 2: <sup>13</sup>C-NMR (100 MHz, CDCI<sub>3</sub>) of compound 5.

## 2. 2. Compound 6:



Spectrum 3: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 6.



Spectrum 4: <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) of compound 6.

## 2.3. Compound 7:



Spectrum 5: <sup>1</sup>H-NMR (400 MHz, DMDO-*d*<sub>6</sub>) of compound 7.



Spectrum 6: Expansion of <sup>1</sup>H-NMR (400 MHz, DMDO-*d*<sub>6</sub>) of compound 7.



Spectrum 7: <sup>13</sup>C-NMR (100 MHz, DMDO-*d*<sub>6</sub>) of compound 7.

## 2.4. Compound 8:



Spectrum 8: <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) of compound 8.



Spectrum 9: Expansion of <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 8.



Spectrum 10: <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) of compound 8.

#### 2.5. Compound 9:



Spectrum 11: <sup>1</sup>H-NMR (400 MHz, acetone-D<sub>6</sub>) of compound 9.



Spectrum 12: Expansion of <sup>1</sup>H-NMR (500 MHz, acetone-D<sub>6</sub>) of compound 9.



Spectrum 13: <sup>13</sup>C-NMR (400 MHz, acetone-D<sub>6</sub>) of compound 9.

## 2.6. Compound 10:



Spectrum 14: <sup>1</sup>H-NMR (400 MHz, MeOD) of compound 10.



Spectrum 15: Expansion of <sup>1</sup>H-NMR (400 MHz, MeOD) of compound 10.



Spectrum 16: <sup>13</sup>C-NMR (100 MHz, MeOD) of compound 10.



Spectrum 17: <sup>1</sup>H-NMR (400 MHz, DMDO-*d*<sub>6</sub>) of compound 10.

## 2.7. Compound 11:



Spectrum 18: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) of compound 11.



Spectrum 19: DEPTQ (125 MHz, CDCI<sub>3</sub>) of compound 11.



Spectrum 20: <sup>1</sup>H-HOMOCOSY (500 MHz, CDCl<sub>3</sub>) of compound 11.



Spectrum 21: NOESY (500 MHz, CDCl<sub>3</sub>) of compound 11.



Spectrum 22: HSQC (125 MHz, CDCl<sub>3</sub>) of compound 11.





Spectrum 23: HMBC (125 MHz, CDCl<sub>3</sub>) of compound 11.

## 2.8. Compound 12:



Spectrum 24: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) of compound 12.



Spectrum 25: DEPTQ (125 MHz, CDCI<sub>3</sub>) of compound 12.



Spectrum 26: <sup>1</sup>H-HOMOCOSY (500 MHz, CDCl<sub>3</sub>) of compound 12.



Spectrum 27: NOESY (500 MHz, CDCl<sub>3</sub>) of compound 12.



CH-

0

H<sub>3</sub>C

`CH₃ compound 12

Spectrum 29: HMBC (125 MHz,  $CDCI_3$ ) of compound 12.

## 2.9. Compound 13:



Spectrum 30: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 13.



Spectrum 31: DEPTQ (100 MHz, CDCI<sub>3</sub>) of compound 13.

#### 2.10. Compound 14:



Spectrum 32: <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) of compound 14.



Spectrum 33: DEPTQ (100 MHz, CDCI<sub>3</sub>) of compound 14.



Spectrum 34: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 15.



Spectrum 35: DEPTQ (100 MHz, CDCI<sub>3</sub>) of compound 15.

#### 2.12. Compound 16:



Spectrum 36: <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) of compound 16.



Spectrum 37: DEPTQ (100 MHz, CDCI<sub>3</sub>) of compound 16.

## 2.13. Compound 17:



Spectrum 38: <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) of compound 17.



Spectrum 39: DEPTQ (100 MHz, CDCl<sub>3</sub>) of compound 17.



Spectrum 40: <sup>1</sup>H-HOMOCOSY (400 MHz, CDCl<sub>3</sub>) of compound 17.



Spectrum 41: NOESY (400 MHz, CDCl<sub>3</sub>) of compound 17.



Spectrum 42: HSQC (100 MHz, CDCl<sub>3</sub>) of compound 17.



Spectrum 43: HMBC (100 MHz, CDCl<sub>3</sub>) of compound 17.

#### 2.14. Compound 18:



Spectrum 44: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 18.



Spectrum 45: DEPTQ (100 MHz, CDCl<sub>3</sub>) of compound 18.



Spectrum 46: <sup>1</sup>H-HOMOCOSY (400 MHz, CDCl<sub>3</sub>) of compound 18.



Spectrum 47: NOESY (400 MHz, CDCl<sub>3</sub>) of compound 18.



Spectrum 48: HSQC (100 MHz, CDCl<sub>3</sub>) of compound 18.



Spectrum 49: HMBC (100 MHz, CDCl<sub>3</sub>) of compound 18.

#### 2.15. Compound 19:



Spectrum 50: <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) of compound 19.



Spectrum 51: DEPTQ (100 MHz, CDCI<sub>3</sub>) of compound 19.

#### 2.16. Compound 20:



Spectrum 52: <sup>1</sup>H-NMR (500 MHz, CDCI<sub>3</sub>) of compound 20.



Spectrum 53: DEPTQ (125 MHz, CDCI<sub>3</sub>) of compound 20.



Spectrum 54: <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) of compound 21.



Spectrum 55: DEPTQ (100 MHz, CDCI<sub>3</sub>) of compound 21.



Spectrum 56: <sup>1</sup>H-HOMOCOSY (400 MHz, CDCl<sub>3</sub>) of compound 21.



Spectrum 57: NOESY (400 MHz, CDCl<sub>3</sub>) of compound 21.



Spectrum 58: HSQC (100 MHz, CDCl<sub>3</sub>) of compound 21.



Spectrum 59: HMBC (100 MHz, CDCl<sub>3</sub>) of compound 21.

2.18. Compound 22:



Spectrum 60: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 22.



Spectrum 61: DEPTQ (100 MHz, CDCl<sub>3</sub>) of compound 22.



Spectrum 62: <sup>1</sup>H-HOMOCOSY (400 MHz, CDCl<sub>3</sub>) of compound 22.



Spectrum 63: NOESY (400 MHz, CDCI<sub>3</sub>) of compound 22.



Spectrum 64: HSQC (100 MHz, CDCl<sub>3</sub>) of compound 22.



Spectrum 65: HMBC (100 MHz,  $CDCI_3$ ) of compound 22.

## 2.19. Compound 23:



Spectrum 66: <sup>1</sup>H-NMR (500 MHz, CDCI<sub>3</sub>) of compound 23.



Spectrum 67: <sup>13</sup>C-NMR (125 MHz, CDCI<sub>3</sub>) of compound 23.

## 2.20. Compound 24:



Spectrum 68: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 24.



Spectrum 69: DEPTQ (100 MHz, CDCl<sub>3</sub>) of compound 24.



Spectrum 70: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 25.



Spectrum 71: DEPTQ (100 MHz, CDCI<sub>3</sub>) of compound 25.

## 2.22. Compound 26:



Spectrum 72: <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of compound 26.



Spectrum 73: DEPTQ (100 MHz, CDCl<sub>3</sub>) of compound 26.

#### 3. Discrimination between N1- alkyl and N3-alkyl regioisomers using NMR data.

To discriminate between each pair of N1-*n*-alkyl and N3-*n*-alkyl naphthoimidazole derivatives (exemplified by compounds **11** and **12** (below) the strategy adopted will be:



- a) the N1-*n*-alkyl will show HMBC <sup>3</sup>J<sub>CH</sub> correlation between C-11b and the hydrogens attached to the first carbon in the alkyl chain (1-(1-H<sub>2</sub>)); it should also show NOESY correlation between 11-H and 1-(1-H<sub>2</sub>) and, probably, other hydrogens in the side chain. The N3-*n*-alkyl compound should show HMBC <sup>3</sup>J<sub>CH</sub> correlation between C-3a and the hydrogens attached to the first carbon in the alkyl chain (3-(1-H<sub>2</sub>)) and it should show NOESY correlation between 4-H<sub>2</sub> and 3-(1-H<sub>2</sub>) and, probably, other hydrogens in the side chain. (HMBC correlation of 1-(1-H<sub>2</sub>) or 3-(1-H<sub>2</sub>) with C-2 is not elucidative.)
- b) The methylene at carbon 4 (4-H<sub>2</sub>) is a convenient starting point, since it's position at δ ~3.2- 3.1 ppm (triplet) is quite constant, for all compounds, **10** to **26**. The two doublets at ~8,1 and 8.4 ppm, corresponding to hydrogens 8-H and 11-H (attributions undetermined as yet) are also important and their position quite constant.

Regiochemistry of the N1-*n*-alkyl series (**11**, **13**, ... **25**): HMBC  ${}^{3}J_{CH}$  correlations 4-H<sub>2</sub> --- C-7a and C-7a --- H-8 are clearly seen in the spectra. (Attributions are shown for **11**, as an example, in Spectrum 23). This establishes  $\delta$  8.4 for H-8, so H-11 must be at  $\delta$  8,1. It is not possible attribute the correlation H-11 --- C-11b precisely (and from C-11b proceed to 1-(1-H<sub>2</sub>)), because this and H-11 --- C-7b and H-11 --- C-9 are jumbled into a single oblong blob. But the inverse correlation, 1-(1-H<sub>2</sub>) --- C-11b is clearly seen. The proposed N-1-*n*-alkyl is confirmed by NOESY (for **11**, Spectrum 21): clearly seen correlations H-11 --- 1-(1-H<sub>2</sub>) and H-11 --- 1-(2-H<sub>2</sub>), no sign of involvement of 4-H<sub>2</sub> ( $\delta$  3.2 ppm). (See figure below.)



Regiochemistry for the N3-*n*-alkyl series (**12**, **14**, ... **26**), the important HMBC  ${}^{3}J_{CH}$  correlations are 4-H<sub>2</sub> --- C-3a and C-3a --- 1-(1-H<sub>2</sub>) (Spectrum **29**, for HMBC of **12** as example); besides 1-(1-H<sub>2</sub>) --- C-2, no other correlation of 1-(1-H<sub>2</sub>) with low field signal is seen. NOESY (Spectrum **27**) confirms the regiochemistry: correlations of 4-H<sub>2</sub> with 1-(1-H<sub>2</sub>), 1-(2-H<sub>2</sub>) and 1-(3-H<sub>3</sub>) are clearly present. (See figure below.)



(HMBC and NOESY spectra for compounds **17** and **18** (1-*n*- and 3-*n*-hexyl) and **21** and **22** (1-*n*- and 3-*n*-octyl) can also be found in the NMR Spectra, **item 2 of Supplementary Information**.)

Observing the <sup>1</sup>H NMR spectra of compounds **11** to **26**, it can be noticed that peaks for 1-(1-H<sub>2</sub>) and 3-(1-H<sub>2</sub>) are always within the region  $\delta$  = 4.3 to 4.6 ppm (doublets), but for the *n*-alkyl group, 1-(1-H<sub>2</sub>) is <u>always</u> more deshielded than 3-(1-H<sub>2</sub>):

| Cs in alkyl           | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 12   | mean |
|-----------------------|------|------|------|------|------|------|------|------|------|
| 1-(1-H <sub>2</sub> ) | 4.52 | 4.58 | 4.68 | 4.57 | 4.55 | 4.56 | 4.52 | 4.54 | 4.57 |
| 3-(1-H <sub>2</sub> ) | 4.35 | 4.40 | 4.49 | 4.38 | 4.34 | 4.48 | 4.39 | 4.38 | 4.40 |
| ∆ (N1-N3)             | 0.17 | 0.18 | 0.19 | 0.19 | 0.21 | 0.08 | 0.13 | 0.16 | 0.16 |

This deshielding effect is due to the aromatic system which is closer to the alkyl group for the N1-alkyl series. [The relative positions (but not the absolute values) are also observed using the ACD Labs HNMR DB simulator: for *n*-propyl,  $1-(1-H_2) = 4.3$  and  $3-(1-H_2) = 4.1$  ppm.]



#### 4. Structure/trypanocidal activity correlation

**Figure 1S.** Plot relating the values of trypanocidal activity,  $IC_{50}$  (µM), observed and calculated with **Eq. 1** (log 1/IC<sub>50</sub> = - 10.271 (± 2.667)  $\sigma_i$  - 0.0716 (± 0.032) MR + 1.399 (± 1.170)), for data in **Table 2S.** (Outliers: entries **S2**, **S6**, **S10**, **S12**, **S25** and **S26**, (**Table 2S**) excluded from correlation; line shows best fit).

| Cpd        | 2-Aryl-naphthoimidazole                                                                    | IC <sub>50</sub> /24 h <sup>a</sup> (μΜ) |
|------------|--------------------------------------------------------------------------------------------|------------------------------------------|
| 2          | 4,5-Dihydro-6,6-dimethyl-6H-2-phenyl-pyran[b-4,3]naphth[1,2-d] imidazole                   | 37.0±0.7 <sup>b</sup>                    |
| 3          | 3,4-Dihydro-6,6-dimethyl-6H-2-(3´-indolyl)-pyran[b-4,3]naphth[1,2-d] imidazole             | 15.4±0.2°                                |
| 4          | 4,5-Dihydro-6,6-dimethyl-6H-2-(4´-methylphenyl)-pyran[b-4,3]naphth[1,2-d] imidazole        | 15.5±2.9 <sup>d</sup>                    |
| 5          | 6,6-Dimethyl-2-(2-thienyl)-3,4,5,6-tetrahydrobenzo[7,8]chromene[5,6-d]imidazole            | 170.2±20.4                               |
| 6          | 2-(2,6-Dichlorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromene[5,6-d]imidazole   | 2118.8±546.1                             |
| 7          | 2-(2,4-Dichlorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromene[5,6-d]imidazole   | > 4000                                   |
| 8          | 6,6-Dimethyl-2-(1-naphthyl)-3,4,5,6-tetrahydrobenzo[7,8]chromene[5,6-d]imidazole           | 1680.7±47.5                              |
| 9          | 4-(6,6-Dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromene[5,6-d]imidazol-2-yl)-2-methoxy-phenol | 251.8±28.0                               |
| S1         | 6,6-Dimethyl-2-(2-methoxyphenyl)-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole      | > 6500                                   |
| S2         | 6,6-Dimethyl-2-(3-methoxyphenyl)-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole      | 3057.8±836.7                             |
| S3         | 6,6-Dimethyl-2-(4-methoxyphenyl)-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole      | 259.3±40.4                               |
| S4         | 6,6-Dimethyl-2-(2-nitrophenyl)-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole        | 1858.1±366.7                             |
| S5         | 6,6-Dimethyl-2-(3-nitrophenyl)-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole        | 579.3±52.5                               |
| S6         | 6,6-Dimethyl-2-(4-nitrophenyl)-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole        | 303.6±12.2                               |
| S7         | 2-(2-Fluorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole       | 243.3±24.6                               |
| <b>S</b> 8 | 2-(3-Fluorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole       | 372.0±38.7                               |
| S9         | 2-(4-Fluorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole       | 98.0±4.8                                 |
| S10        | 2-(2-Chlorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole       | 39.4±8.1                                 |
| S11        | 2-(3-Chlorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole       | 1064.2±261.6                             |
| S12        | 2-(4-Chlorophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole       | 2286.3±21.1                              |
| S13        | 2-(2-Bromophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole        | 2004.0±22.9                              |
| S14        | 2-(3-Bromophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole        | 147.8±12.5                               |
| S15        | 2-(4-Bromophenyl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole        | 84.9±3.2                                 |
| S16        | 6,6-Dimethyl-2-(2-methylphenyl)-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole       | 90.8±5.8                                 |
| S17        | 6,6-Dimethyl-2-(3-methylphenyl)-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole       | 37.5±12.8                                |

 Table 1S
 Activity of 2-aryl-naphthoimidazoles against trypomastigote forms of T. cruzi

| S18 | 6,6-Dimethyl-2-[2-(trifluoromethyl)phenyl]-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole | 448.0±55.7   |
|-----|-------------------------------------------------------------------------------------------------|--------------|
| S19 | 6,6-Dimethyl-2-[3-(trifluoromethyl)phenyl]-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole | 128.7±29.4   |
| S20 | 6,6-Dimethyl-2-[4-(trifluoromethyl)phenyl]-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole | 227.5±58.0   |
| S21 | 2-(6,6-Dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazol-2-yl)benzonitrile           | >8000        |
| S22 | 3-(6,6-Dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazol-2-yl)benzonitrile           | 518.5±78.9   |
| S23 | 4-(6,6-Dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazol-2-yl)benzonitrile           | 1095.9±92.9  |
| S24 | 6,6-Dimethyl-2-pyridin-3-yl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole                | 154.9±10.4   |
| S25 | 6,6-Dimethyl-2-quinolin-3-yl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole               | 190.5±30.3   |
| S26 | 2-(1,3-Benzodioxol-5-yl)-6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromeno[5,6-d]imidazole      | 1850.5±241.1 |

<sup>a</sup> Mean ± SD of at least three independent experiments; <sup>b</sup> Ref. 10a;<sup>c</sup> Ref. 10b; <sup>d</sup> Ref. 10c

**Table 2S** Data for QSAR. [Compounds **2-9**, **S2-S20** and **S22-S26**: see **Table 1S**; compounds **S1** and **S21** were not included due to very large (> 6500  $\mu$ M) IC<sub>50</sub>. Parameters: frontier orbital energies (LUMO and HOMO); hardness ( $\eta(E_{LUMO}-E_{HOMO})/2$ ); inductive effect constant ( $\sigma_1$ ); lipophilicity (Log *P*, calculated for the whole molecule); molar refractivity (MR).]



| Cpd | Ar from                         | IC <sub>50</sub><br>(μΜ) | Log IC <sub>50</sub><br>(μΜ) | LUMO   | НОМО   | η    | σι    | Log P | MR    |
|-----|---------------------------------|--------------------------|------------------------------|--------|--------|------|-------|-------|-------|
| 2   | Benzaldeyde                     | 37±0.7                   | 1.56                         | -0.615 | -8.082 | 3.73 | 0.00  | 6.15  | 25.73 |
| 3   | Indole-3-carboxaldehyde         | 15.4±0.2                 | 1.18                         | -0.483 | -7.755 | 3.64 | -0.01 | 6.07  | 37.21 |
| 4   | 4-Methylbenzaldehyde            | 15.5±2.9                 | 1.19                         | -0.603 | -8.049 | 3.72 | 0.10  | 6.61  | 30.35 |
| 5   | Thiophene-2-carboxaldehyde      | 170.2±20.4               | 2.23                         | -0.808 | -8.077 | 3.63 | 0.19  | 5.57  | 23.87 |
| 6   | 2.6-Diclorobenzaldeyde          | 2118.8±546.1             | 3.32                         | -0.719 | -8.146 | 3.71 | 0.24  | 6.51  | 35.38 |
| 7   | 2.4- Diclorobenzaldeyde         | 4116±281.7               | 3.61                         | -0.842 | -8.162 | 3.66 | 0.23  | 6.93  | 35.38 |
| 8   | 1-Naphthaldehyde                | 1680.7±47.5              | 3.22                         | -0.708 | -8.087 | 3.69 | 0.14  | 7.38  | 43.28 |
| 9   | 2-Methoxy-4-hydroxybenzaldehyde | 251.8±28                 | 2.4                          | -0.621 | -8.058 | 3.72 | 0.14  | 5.74  | 33.62 |
| S2  | 3-Methoxybenzaldeyde            | 3057.8±836.7             | 3.48                         | -0.599 | -8.072 | 3.74 | 0.10  | 6.31  | 0.11  |

| S3  | 4-Methoxybenzaldeyde          | 259.3±40.4   | 2.41 | -0.572 | -8.015 | 3.72 | 0.11 | 6.39 | 32.09 |
|-----|-------------------------------|--------------|------|--------|--------|------|------|------|-------|
| S4  | 2-Nitrobenzaldeyde            | 1858.1±366.7 | 3.26 | -1.110 | -8.271 | 3.58 | 0.21 | 5.64 | 31.76 |
| S5  | 3-Nitrobenzaldeyde            | 579.3±52.5   | 2.76 | -1.273 | -8.336 | 3,53 | 0,22 | 5.88 | 0.20  |
| S6  | 4-Nitrobenzaldeyde            | 303.6±12.2   | 2.48 | -1.470 | -8.418 | 3.47 | 0.23 | 6.11 | 31.76 |
| S7  | 2- Fluorobenzaldeyde          | 243.3±24.6   | 2.38 | -0.721 | -8.117 | 3.70 | 0.19 | 5.78 | 25.84 |
| S8  | 3-Fluorobenzaldeyde           | 372±38.7     | 2.57 | -0.792 | -8.180 | 3.69 | 0.16 | 6.40 | 25.84 |
| S9  | 4-Fluorobenzaldeyde           | 98±4.8       | 1.99 | -0.780 | -8.164 | 3.93 | 0.13 | 6.20 | 25.84 |
| S10 | 2-Chlorobenzaldeyde           | 39.4±8.1     | 1.59 | -0.695 | -8.116 | 3.71 | 0.17 | 6.32 | 30.55 |
| S11 | 3-Chlorobenzaldeyde           | 1064.2±261.6 | 3.02 | -0.729 | -8.144 | 3.71 | 0.16 | 6.94 | 30.55 |
| S12 | 4-Chlorobenzaldeyde           | 2286.3±21.1  | 3.35 | -0.755 | -8.130 | 3.69 | 0.15 | 6.74 | 30.55 |
| S13 | 2-Bromobenzaldeyde            | 2004±22.9    | 3.3  | -0.697 | -8.097 | 3.70 | 0.18 | 6.50 | 33.45 |
| S14 | 3-Bromobenzaldeyde            | 147.8±12.5   | 2.16 | -0.765 | -8.159 | 3.70 | 0.13 | 7.12 | 33.45 |
| S15 | 4-Bromobenzaldeyde            | 84.9±3.2     | 1.92 | -0.778 | -8.171 | 3.70 | 0.15 | 7.09 | 33.45 |
| S16 | 2-Methylbenzaldeyde           | 90.8±5.8     | 1.95 | -0.413 | -8.142 | 3.86 | 0.12 | 6.61 | 30.35 |
| S17 | 3-Methylbenzaldeyde           | 37.5±12.8    | 1.57 | -0.592 | -8.069 | 3.74 | 0.08 | 6.61 | 30.35 |
| S18 | 2-Trifluoromethylbenzaldehyde | 448±55.7     | 2.65 | -0.745 | -8.230 | 3.74 | 0.17 | 7.12 | 30.72 |

| S19 | 3-Trifluoromethylbenzaldehyde  | 128.7±29.4   | 2.1  | -0.949 | -8.257 | 3.65 | 0.15 | 7.20 | 30.72 |
|-----|--------------------------------|--------------|------|--------|--------|------|------|------|-------|
| S20 | 4-Trifluoromethylbenzaldehyde  | 227.5±58.0   | 2.33 | -1.088 | -8.297 | 3.60 | 0.19 | 7.12 | 30.72 |
| S22 | 3-Cyanobenzaldeyde             | 518±78.9     | 2.71 | -0.954 | -8.253 | 3.65 | 0.19 | 5.77 | 30.29 |
| S23 | 4-Cyanobenzaldeyde             | 1095.9±92.9  | 3.03 | -1.103 | -8.271 | 3.58 | 0.17 | 5.80 | 30.29 |
| S24 | 3-Pyridine carboxylaldehyde    | 154.9±10.4   | 2.19 | -0.862 | -8.173 | 3.66 | 0.22 | 5.07 | 23.52 |
| S25 | 3-Quinoline carboxylaldehyde   | 190.5±30.3   | 2.27 | -0.995 | -8.123 | 3.56 | 0.22 | 6.43 | 41.08 |
| S26 | 3.4-Methylenedioxybenzaldehyde | 1850.5±241.1 | 3.26 | -0.683 | -8.099 | 3.71 | 0.12 | 5.56 | 31.78 |