Supplementary data

Design, synthesis and pharmacological evaluation of new 2-oxo-quinoline derivatives containing α-aminophosphonates as potential antitumor agents

Yan-Cheng Yu, Wen-Bin Kuang, Ri-Zhen Huang, Yi-Lin Fang, Ye Zhang, Zhen-Feng Chen, Xian-Li Ma

Part 1. Selected relevant parameters of compounds 4c5, 4d2 and 5c

Table S1 Crystallographic data and refinements of compounds 4c5, 4d2 and 5c.

<table>
<thead>
<tr>
<th>Formula</th>
<th>C21H24N3O7P(4c5)</th>
<th>C22H24NO6P·C3H7N(4d2)</th>
<th>C22H26N2O5P(5c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr</td>
<td>461.40</td>
<td>486.45</td>
<td>427.42</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P21/c</td>
<td>P21/n</td>
</tr>
<tr>
<td>a/Å</td>
<td>8.0905 (8)</td>
<td>12.598 (13)</td>
<td>8.405 (2)</td>
</tr>
<tr>
<td>b/Å</td>
<td>11.3328 (17)</td>
<td>15.985 (17)</td>
<td>16.660 (3)</td>
</tr>
<tr>
<td>c/Å</td>
<td>11.780 (4)</td>
<td>12.834 (13)</td>
<td>16.156 (3)</td>
</tr>
<tr>
<td>α/°</td>
<td>91.967 (17)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>90.537 (14)</td>
<td>93.364 (18)</td>
<td>99.29(2)°</td>
</tr>
<tr>
<td>γ/°</td>
<td>99.464 (10)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V/Å³</td>
<td>1064.6 (4)</td>
<td>2580 (5)</td>
<td>2232.5 (9)</td>
</tr>
<tr>
<td>T/K</td>
<td>293(2)</td>
<td>293(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Dc/g.cm⁻³</td>
<td>1.439</td>
<td>1.439</td>
<td>1.272</td>
</tr>
<tr>
<td>θ/°</td>
<td>3.64 to 25.2°</td>
<td>1.6 to 26.4</td>
<td>3.5 to 26.4</td>
</tr>
<tr>
<td>F (000)</td>
<td>484</td>
<td>1024</td>
<td>904</td>
</tr>
<tr>
<td>μ (Mo, Kα)(mm⁻¹)</td>
<td>0.18</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>Total no. reflns</td>
<td>4332</td>
<td>23246</td>
<td>4055</td>
</tr>
<tr>
<td>No. indep. reflns</td>
<td>2256</td>
<td>5264</td>
<td>3201</td>
</tr>
<tr>
<td>Rint</td>
<td>0.060</td>
<td>0.0206</td>
<td>0.033</td>
</tr>
<tr>
<td>R1 [I>2σ (I)]</td>
<td>0.074</td>
<td>0.072</td>
<td>0.073</td>
</tr>
<tr>
<td>wR2(all data)</td>
<td>0.200</td>
<td>0.198</td>
<td>0.220</td>
</tr>
<tr>
<td>S</td>
<td>1.04</td>
<td>0.93</td>
<td>1.02</td>
</tr>
</tbody>
</table>
Table S2 Selected bond lengths (Å) and angles (°) for compound 4c$_5$.

<table>
<thead>
<tr>
<th>Bond names</th>
<th>Bond length(Å)</th>
<th>Bond angle</th>
<th>Angle(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1—O1</td>
<td>1.455 (3)</td>
<td>O1—P1—O2</td>
<td>117.21 (16)</td>
</tr>
<tr>
<td>P1—O2</td>
<td>1.575 (3)</td>
<td>O1—P1—O3</td>
<td>114.53 (18)</td>
</tr>
<tr>
<td>P1—O3</td>
<td>1.568 (3)</td>
<td>O1—P1—C15</td>
<td>115.07 (17)</td>
</tr>
<tr>
<td>P1—C15</td>
<td>1.824 (4)</td>
<td>O2—P1—C15</td>
<td>100.79 (17)</td>
</tr>
<tr>
<td>O2—C1</td>
<td>1.450 (6)</td>
<td>O3—P1—O2</td>
<td>102.59 (16)</td>
</tr>
<tr>
<td>O3—C3</td>
<td>1.455 (5)</td>
<td>O3—P1—C15</td>
<td>104.77 (17)</td>
</tr>
<tr>
<td>O4—C5</td>
<td>1.427 (5)</td>
<td>C1—O2—P1</td>
<td>123.2 (3)</td>
</tr>
<tr>
<td>O4—C6</td>
<td>1.370 (4)</td>
<td>C3—O3—P1</td>
<td>122.8 (3)</td>
</tr>
<tr>
<td>O5—C11</td>
<td>1.248 (4)</td>
<td>C6—O4—C5</td>
<td>118.6 (3)</td>
</tr>
<tr>
<td>O6—N3</td>
<td>1.219 (4)</td>
<td>O6—N3—O7</td>
<td>122.1 (3)</td>
</tr>
<tr>
<td>O7—N3</td>
<td>1.241 (4)</td>
<td>O6—N3—C19</td>
<td>119.4 (4)</td>
</tr>
<tr>
<td>N1—C11</td>
<td>1.347 (5)</td>
<td>O7—N3—C19</td>
<td>118.5 (4)</td>
</tr>
<tr>
<td>N2—C15</td>
<td>1.438 (4)</td>
<td>O2—C1—C2</td>
<td>109.4 (5)</td>
</tr>
<tr>
<td>N2—C16</td>
<td>1.369 (4)</td>
<td>O3—C3—C4</td>
<td>108.6 (4)</td>
</tr>
<tr>
<td>N3—C19</td>
<td>1.436 (5)</td>
<td>O4—C6—C14</td>
<td>123.2 (4)</td>
</tr>
</tbody>
</table>

Table S3 Selected bond lengths (Å) and angles (°) for compound 4d$_2$.

<table>
<thead>
<tr>
<th>Bond names</th>
<th>Bond length(Å)</th>
<th>Bond angle</th>
<th>Angle(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1—O5</td>
<td>1.481 (3)</td>
<td>O5—P1—O6</td>
<td>116.01 (17)</td>
</tr>
<tr>
<td>P1—O6</td>
<td>1.581 (3)</td>
<td>O5—P1—O7</td>
<td>110.32 (19)</td>
</tr>
<tr>
<td>P1—O7</td>
<td>1.582 (3)</td>
<td>O5—P1—C18</td>
<td>113.91 (18)</td>
</tr>
<tr>
<td>P1—C18</td>
<td>1.812 (4)</td>
<td>O6—P1—O7</td>
<td>106.10 (18)</td>
</tr>
<tr>
<td>O1—C1</td>
<td>1.433 (6)</td>
<td>O6—P1—C18</td>
<td>103.4 (2)</td>
</tr>
<tr>
<td>O1—C2</td>
<td>1.396 (5)</td>
<td>O7—P1—C18</td>
<td>106.34 (18)</td>
</tr>
<tr>
<td>O2—C1</td>
<td>1.427 (6)</td>
<td>C2—O1—C1</td>
<td>105.6 (4)</td>
</tr>
<tr>
<td>O2—C10</td>
<td>1.386 (5)</td>
<td>C10—O2—C1</td>
<td>106.3 (4)</td>
</tr>
<tr>
<td>O3—C7</td>
<td>1.260 (5)</td>
<td>C11—O4—C18</td>
<td>120.8 (3)</td>
</tr>
<tr>
<td>O4—C11</td>
<td>1.429 (5)</td>
<td>C14—C13—C12</td>
<td>122.7 (4)</td>
</tr>
<tr>
<td>O4—C18</td>
<td>1.470 (5)</td>
<td>C13—C14—C15</td>
<td>123.6 (5)</td>
</tr>
<tr>
<td>O7—C21</td>
<td>1.451 (6)</td>
<td>C16—C14—C15</td>
<td>120.0 (5)</td>
</tr>
<tr>
<td>O6—C19</td>
<td>1.445 (6)</td>
<td>C19—O6—P1</td>
<td>125.2 (3)</td>
</tr>
<tr>
<td>O7—C21</td>
<td>1.451 (6)</td>
<td>C21—O7—P1</td>
<td>123.9 (3)</td>
</tr>
<tr>
<td>N1—C7</td>
<td>1.358 (5)</td>
<td>C7—N1—C8</td>
<td>126.2 (3)</td>
</tr>
</tbody>
</table>
Table S4 Selected bond lengths (Å) and angles (°) for compound 5c.

<table>
<thead>
<tr>
<th>Bond names</th>
<th>Bond length(Å)</th>
<th>Bond angle</th>
<th>Angle(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1—O3</td>
<td>1.463 (4)</td>
<td>O3—P1—O4</td>
<td>114.8 (3)</td>
</tr>
<tr>
<td>P1—O4</td>
<td>1.580 (5)</td>
<td>O3—P1—O5</td>
<td>115.9 (3)</td>
</tr>
<tr>
<td>P1—O5</td>
<td>1.581 (5)</td>
<td>O3—P1—C19</td>
<td>115.8 (3)</td>
</tr>
<tr>
<td>C9—C10</td>
<td>1.419 (7)</td>
<td>O4—P1—O5</td>
<td>104.1 (3)</td>
</tr>
<tr>
<td>C10—C11</td>
<td>1.414 (7)</td>
<td>O4—P1—C19</td>
<td>101.6 (3)</td>
</tr>
<tr>
<td>P1—C19</td>
<td>1.767 (6)</td>
<td>O5—P1—C19</td>
<td>102.8 (3)</td>
</tr>
<tr>
<td>O1—C1</td>
<td>1.440 (6)</td>
<td>C2—O1—C1</td>
<td>116.2 (5)</td>
</tr>
<tr>
<td>O1—C2</td>
<td>1.367 (6)</td>
<td>C20—O4—P1</td>
<td>123.1 (6)</td>
</tr>
<tr>
<td>O2—C7</td>
<td>1.266 (5)</td>
<td>C22—O5—P1</td>
<td>124.8 (5)</td>
</tr>
<tr>
<td>O4—C20</td>
<td>1.431 (11)</td>
<td>C12—N1—C13</td>
<td>119.7 (5)</td>
</tr>
<tr>
<td>O5—C22</td>
<td>1.345 (7)</td>
<td>C14—C13—N1</td>
<td>125.5 (5)</td>
</tr>
<tr>
<td>N1—C12</td>
<td>1.261 (6)</td>
<td>C14—C13—C18</td>
<td>117.7 (6)</td>
</tr>
<tr>
<td>N1—C13</td>
<td>1.409 (7)</td>
<td>C18—C13—N1</td>
<td>116.7 (5)</td>
</tr>
<tr>
<td>C13—C14</td>
<td>1.383 (7)</td>
<td>C15—C14—C13</td>
<td>120.7 (5)</td>
</tr>
<tr>
<td>C13—C18</td>
<td>1.391 (7)</td>
<td>C14—C15—C16</td>
<td>121.8 (6)</td>
</tr>
<tr>
<td>C14—C15</td>
<td>1.369 (8)</td>
<td>C15—C16—C19</td>
<td>121.2 (6)</td>
</tr>
</tbody>
</table>
Part 2. Experimental methods

2.1. In vitro cytotoxicity

HepG2 human liver hepatocellular carcinoma cells, SK-OV-3 human ovarian carcinoma cells, NCI-H460 human large cell lung carcinoma cell, HL 7702 human liver hepatocellular cells were all obtained from the Institute of Biochemistry and Cell Biology, China Academy of Sciences. They were cultured in a humidified, 5% CO₂ atmosphere at 37°C and maintained in monolayer culture in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 mg/mL streptomycin and 100 mg/mL penicillin. Chemosensitivity was assessed with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Briefly, exponentially growing cells were seeded into 96-well plates and treated with the indicated concentrations of compounds 4-5 for 48 h, and then 10 mL of MTT (10 mg/mL) was added. After incubation for 4 h at 37°C, the purple formazan crystals (a reduced form of MTT) generated in viable cells were dissolved by adding 100 μL DMSO to each well. The plates were swirled gently for 10 min to dissolve the precipitate, and quantified by measuring the optical density of the plates at 490 nm using a plate reader (TECAN infinite M1000). Each concentration was repeated in three wells and the same experimental conditions were maintained for all testing procedures. The MTT assays were repeated three times for each cell line.

2.2. Mitochondrial Membrane Potential Staining

Mitochondrial depolarization was assayed in T24 cells using a JC-1 probe. Briefly, cells cultured in six-well plates after the indicated treatment were incubated with an equal volume of JC-1 staining solution (5 μg/mL) at 37°C for 20 min and rinsed twice with PBS. Mitochondrial membrane potentials were monitored by determining the relative amounts of dual emissions from mitochondrial JC-1 monomers or aggregates using a Nikon ECLIPSE TE2000-S fluorescent microscope. Mitochondrial depolarization was indicated by an increase in the green/red fluorescence intensity ratio.

2.3. AO/EB Staining

Cells were seeded at a concentration of 5×10⁴ cell/mL in a volume of 2 mL on sterile cover slips in six-well tissue culture plates. Following incubation, the medium was removed and replaced with fresh medium plus 10% FBS and supplemented with compound 3d. After treatment, cover slips with cell monolayers were inverted on a glass slide with 20 μL of AO/EB stain (100 mg/mL). Fluorescence was read on a Nikon ECLIPSE TE2000-S fluorescence microscope (OLYMPUS Co., Japan).

2.4. Hoechst 333258 Staining

Cells grown on a sterile cover slips in six-well tissue culture plates were treated with test compounds for the indicated time. The culture medium containing the compounds was removed, and the cells were fixed in 4%
paraformaldehyde for 10 min. After washing twice with phosphate buffered saline (PBS), the cells were stained with 0.5 mL of Hoechst 33258 (Beyotime) for 5 min and again washed twice with PBS. Nuclear staining was observed with a Nikon ECLIPSE TE2000-S fluorescence microscope at 350 nm excitation and 460 nm emission wavelengths.

2.5. Apoptosis Analysis

Apoptosis was assayed by annexin V-FITC and PI. Cells were seeded at 2×10⁶/well in 10% FBS–DMEM into six-well plates and treated with test compounds for 24 h. The cells were then washed twice with cold PBS and resuspended in 1× binding buffer (0.1 M pH 7.4 Hepes/NaOH, 1.4 M NaCl, 25 mM CaCl₂) at a concentration of 1×10⁶ cells/mL. A 100 µL volume of the solution (1×10⁵ cells) was transferred to a 5 mL culture tube; 5 µL of FITC Annexin V (BD, Pharmingen) and 5 µL PI were added to each tube. The cell suspension was gently vortexed and incubated for 30 minutes at room temperature (25°C) in the dark, and then 200 µL PBS was added to each tube. The apoptosis assay was carried out by flow cytometry (FACSVerse, BD, USA) at 488 nm excitation. The lower left quadrant included viable cells (annexin V–PI–); lower right quadrant included early apoptotic cells (annexin V+/PI–); upper right quadrant included late apoptotic cells (annexin V+/PI+); and the upper left quadrant included necrotic cells (annexin V–/PI+). The percentage of PI+ and/or Annexin V-FITC+ cells inside the quadrants was reported.

2.6. Cell Cycle Analysis

Cell cultures were treated with the indicated concentrations of compound 3d and after 48 h incubation, the cells were washed twice with ice-cold PBS, fixed and permeabilized with ice-cold 70% ethanol at −20°C overnight. The cells were treated with 100 µg/mL RNase A at 37°C for 30 min after washing with ice-cold PBS, and finally stained with 1 mg/mL PI in the dark at 4°C for 30 min. Cell cycle analysis was performed by flow cytometry (FACSVerse, BD, USA) at an excitation of 488 nm and an emission of 620 nm.

2.7. ROS Assay

T24 cells were seeded into six-well plates, and following treatment, were incubated with 10 mM DCFH-DA (Beyotime, Haimen, China) dissolved in cell-free medium for 30 min at 37°C and in the dark. They were then washed three times with PBS. Cellular fluorescence was measured with a Nikon ECLIPSE TE2000-S fluorescence microscope at 485 nm excitation and 538 nm emission.

2.8. Calcium Analysis

To monitor the effect of compounds 5b on calcium release, T24 cells were seeded into six-well plates, and loaded with 5 mM of the membrane-permeable calcium indicator Fluo-3 acetoxyethyl ester (Beyotime, Haimen, China) in PBS buffer for 40 min at 37°C. After loading with the Fluo-3 dye, cells were washed with PBS and suspended in Ca-free PBS containing 5 mM EGTA. Fluo-3 was excited by argon laser light at 488 nm; fluorescence was measured
at 515 nm, and quantified with a Nikon ECLIPSETE2000-S fluorescence microscope.

2.9. Western Blot Assay

HepG2 cells were collected after treatment with compound 5b (10 μM) for 12 h and then lysed in ice-cold lysis buffer (1% sodium dodecyl sulfate in 25 mM pH 7.5 Tris–HCl, 4 mM EDTA, 100 mM NaCl, 1 mM phenylmethylsulfonyl fluoride, 10 mg/mL leupeptin and 10 mg/mL soybean trypsin inhibitor). Whole-cell lysates were centrifuged at 12,000×g for 5 min. Thereafter, the protein concentration was determined with a bicinchoninic acid protein assay kit (Beyotime Co, China). An aliquot of cell lysate (40–50 μg) was fractionated by SDS-PAGE on 12% polyacrylamide gels for 2 h and transferred to polyvinylidene difluoride membranes. After blocking with 5% non-fat dry milk in PBS-t for 1 h at room temperature, the membranes were incubated with β-actin, cytochrome c, caspase-9, caspase-3, Bax or Bcl-2 antibodies (Bioworld Technology Inc, USA) overnight at 4°C, washed with tris-buffered saline and Tween 20, and then incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h at room temperature. Proteins were detected by electrochemiluminescence, Thermo Fisher Scientific, USA) and analysed by Image J software.

2.10. Statistical Analysis

Data are expressed as mean ± SD for three different determinations. Statistical significance was analyzed by one-way ANOVA. Mean separations were performed using the least significant difference method. P<0.05 was defined as statistically significant.
Part 3. 1H NMR, 13C NMR and HRMS of compounds 4a$_1$–4d$_7$ and 5a–5d.

4a$_1$: Yield 54.29%. 1H NMR (500 MHz, DMSO) δ 11.87 (s, 1H), 8.05 (d, $J = 3.7$ Hz, 1H), 7.65 (d, $J = 7.7$ Hz, 1H), 7.49 (t, $J = 7.7$ Hz, 1H), 7.31 (d, $J = 8.2$ Hz, 1H), 7.19 (t, $J = 7.5$ Hz, 1H), 4.48 (d, $J = 21.9$ Hz, 1H), 4.14 – 4.05 (m, 2H), 3.96 – 3.84 (m, 2H), 2.40 (ddd, $J = 25.7$, 13.6, 7.0 Hz, 2H), 1.36 (dt, $J = 14.0$, 7.0 Hz, 2H), 1.26 (ddd, $J = 16.7$, 10.7, 5.3 Hz, 5H), 1.08 (t, $J = 7.0$ Hz, 3H), 0.82 (t, $J = 7.3$ Hz, 3H). 13C NMR (126 MHz, DMSO) δ 161.98, 161.93, 138.40, 137.70, 137.64, 130.60, 129.88, 128.18, 122.42, 119.55, 119.53, 115.37, 62.92, 62.87, 62.42, 62.36, 53.20, 51.96, 47.67, 47.55, 40.48, 40.31, 40.23, 40.14, 39.98, 39.81, 39.64, 39.48, 31.86, 20.17, 16.79, 16.74, 16.63, 16.58, 14.26. ESI-HRMS m/z Calc for C$_{18}$H$_{27}$N$_2$O$_4$P [M+H]$^+$: 367.1787; found: 367.1782.

![Chemical structure of compound 4a$_1$](image)

Fig. 1. Chemical structure of compound 4a$_1$

![1H NMR of compound 4a$_1$](image)

Fig. 2. 1H NMR of compound 4a$_1$
Fig. 3. 13C NMR of compound 4a$_1$

Fig. 4. ESI-HRMS of compound 4a$_1$
4a₂: Yield 75.82%, ¹H NMR (500 MHz, DMSO) δ 11.96 (s, 1H), 8.08 (d, J = 3.7 Hz, 1H), 7.57 (d, J = 7.7 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.19 – 7.14 (m, 1H), 6.85 (d, J = 8.3 Hz, 2H), 6.62 (d, J = 8.5 Hz, 2H), 6.11 (dd, J = 10.4, 6.2 Hz, 1H), 5.26 (dd, J = 24.5, 10.4 Hz, 1H), 4.11 (dq, J = 14.2, 7.1 Hz, 2H), 4.02 – 3.87 (m, 2H), 2.09 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.68, 161.64, 145.11, 144.99, 138.47, 137.65, 137.60, 130.80, 130.13, 129.78, 128.12, 126.32, 122.56, 119.40, 119.38, 115.50, 113.86, 63.22, 63.16, 62.92, 62.86, 48.28, 47.05, 40.50, 40.43, 40.34, 40.26, 40.17, 40.00, 39.84, 39.67, 39.50, 20.45, 16.77, 16.73, 16.58, 16.54. ESI-HRMS m/z Calc for C₂₁H₂₅N₂O₄P [M+Na]⁺ : 423.1450; found: 423.1447.

Fig. 5. Chemical structure of compound 4a₂

Fig. 6. ¹H NMR of compound 4a₂
Fig. 7. 13C NMR of compound $4a_2$

Fig. 8. ESI-HRMS of compound $4a_2$
4a3: Yield 70.24%, 1H NMR (400 MHz, DMSO) δ 12.00 (s, 1H), 8.10 (d, $J = 3.7$ Hz, 1H), 7.59 (d, $J = 7.7$ Hz, 1H), 7.48 (t, $J = 7.7$ Hz, 1H), 7.31 (d, $J = 8.2$ Hz, 1H), 7.17 (t, $J = 7.5$ Hz, 1H), 6.93 (t, $J = 7.8$ Hz, 1H), 6.57 (s, 1H), 6.50 (d, $J = 8.1$ Hz, 1H), 6.39 (d, $J = 7.4$ Hz, 1H), 6.25 (dd, $J = 10.2$, 6.2 Hz, 1H), 5.30 (dd, $J = 24.4$, 10.3 Hz, 1H), 4.12 (dq, $J = 14.2$, 7.1 Hz, 2H), 4.04 – 3.85 (m, 2H), 2.13 (s, 3H), 1.22 (t, $J = 7.1$ Hz, 3H), 1.09 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 161.66, 161.61, 147.46, 147.32, 138.46, 138.35, 137.73, 137.67, 130.86, 130.14, 129.24, 128.16, 122.60, 119.39, 119.36, 118.69, 115.51, 114.43, 110.74, 63.26, 63.19, 62.97, 62.90, 48.02, 46.47, 40.57, 40.36, 40.15, 39.95, 39.74, 39.53, 39.32, 21.78, 16.79, 16.73, 16.60, 16.54. ESI-HRMS m/z Calc for C$_{21}$H$_{25}$N$_2$O$_4$P [M-H]: 399.1474; found: 399.1493.

Fig. 9. Chemical structure of compound 4a3

Fig. 10. 1H NMR of compound 4a3
Fig. 11. 13C NMR of compound 4a$_3$

Fig. 12. ESI-HRMS of compound 4a$_2$
4a: Yield 63.62%. \(^1\)H NMR (500 MHz, DMSO) δ 11.87 (s, 1H), 8.05 (d, J = 3.7 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 4.48 (d, J = 21.9 Hz, 1H), 4.14 – 4.05 (m, 2H), 3.96 – 3.84 (m, 2H), 2.40 (ddd, J = 25.7, 13.6, 7.0 Hz, 2H), 1.36 (dt, J = 14.0, 7.0 Hz, 2H), 1.26 (ddd, J = 16.7, 10.7, 5.3 Hz, 5H), 1.08 (t, J = 7.0 Hz, 3H), 0.82 (t, J = 7.3 Hz, 3H). \(^1\)C NMR (126 MHz, DMSO) δ 161.66, 161.62, 147.44, 147.33, 138.48, 137.76, 137.71, 130.87, 129.99, 129.36, 128.16, 122.60, 119.39, 119.36, 117.79, 115.53, 113.65, 63.26, 63.21, 62.99, 62.93, 47.97, 46.73, 40.47, 40.30, 40.14, 39.97, 39.80, 39.63, 39.47, 16.76, 16.72, 16.58, 16.53. ESI-HRMS m/z Calc for C\(_{20}\)H\(_{23}\)N\(_2\)O\(_4\)P [M+Na\(^+\)]: 409.1293; found: 409.1293.

![Chemical structure of compound 4a](image)

Fig. 13. Chemical structure of compound 4a

![1H NMR of compound 4a](image)

Fig. 14. \(^1\)H NMR of compound 4a
Fig. 15. 13C NMR of compound 4a$_4$

Fig. 16. ESI-HRMS of compound 4a$_4$
4a₅: Yield 73.01%, 1H NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 8.13 (d, J = 3.4 Hz, 1H), 8.03 (d, J = 9.3 Hz, 2H), 7.95 (dd, J = 9.4, 5.6 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.25 – 7.17 (m, 1H), 6.86 (d, J = 9.3 Hz, 2H), 5.47 (dd, J = 22.6, 9.4 Hz, 1H), 4.21 – 3.88 (m, 4H), 1.21 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H) 13C NMR (101 MHz, DMSO) δ 161.37, 161.31, 153.69, 153.58, 138.63, 138.45, 138.39, 137.66, 131.28, 128.59, 128.41, 126.45, 122.77, 119.18, 119.15, 115.65, 112.43, 63.46, 63.39, 63.36, 63.29, 47.73, 46.17, 40.60, 40.39, 40.18, 39.98, 39.77, 39.56, 39.35, 16.78, 16.72, 16.59, 16.54. ESI-HRMS m/z Calc for C$_{20}$H$_{22}$N$_3$O$_6$P [M+Na$^+$]: 454.1144; found: 454.1163.

Fig. 17. Chemical structure of compound 4a₅

Fig. 18. 1H NMR of compound 4a₅
Fig. 19. 13C NMR of compound 4a$_5$

![13C NMR of compound 4a$_5$](image)

Fig. 20. ESI-HRMS of compound 4a$_5$

![ESI-HRMS of compound 4a$_5$](image)
4a6: Yield 79.13%. 1H NMR (400 MHz, DMSO) δ 12.00 (s, 1H), 8.10 (d, $J = 3.7$ Hz, 1H), 7.59 (d, $J = 7.7$ Hz, 1H), 7.50 (t, $J = 7.7$ Hz, 1H), 7.32 (d, $J = 8.2$ Hz, 1H), 7.22 – 7.14 (m, 1H), 6.96 – 6.85 (m, 2H), 6.71 (ddd, $J = 6.8$, 5.2, 2.8 Hz, 2H), 6.37 (dd, $J = 10.3$, 6.3 Hz, 1H), 5.25 (dd, $J = 24.4$, 10.3 Hz, 1H), 4.13 (dq, $J = 14.2$, 7.1 Hz, 2H), 4.05 – 3.84 (m, 2H), 1.23 (t, $J = 7.0$ Hz, 3H), 1.09 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 161.68, 161.62, 156.67, 154.36, 144.10, 143.95, 138.49, 137.78, 137.71, 130.92, 129.82, 128.19, 122.62, 119.35, 119.31, 115.88, 115.66, 115.54, 114.60, 114.53, 63.27, 63.20, 62.99, 62.92, 48.53, 46.98, 40.60, 40.39, 40.19, 39.98, 39.77, 39.56, 39.35, 16.79, 16.74, 16.59, 16.54. ESI-HRMS m/z Calc for C$_{20}$H$_{22}$FN$_2$O$_4$P [M+Na]$^+$: 427.1199; found: 427.1204.

![Fig. 21. Chemical structure of compound 4a6](image)

![Fig. 22. 1H NMR of compound 4a6](image)
Fig. 23. 13C NMR of compound 4a$_6$

Fig. 24. ESI-HRMS of compound 4a$_6$
4a: Yield 80.64%, \(^1\)H NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 8.13 (d, J = 3.4 Hz, 1H), 8.03 (d, J = 9.3 Hz, 2H), 7.95 (dd, J = 9.4, 5.6 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.25 – 7.17 (m, 1H), 6.86 (d, J = 9.3 Hz, 2H), 5.47 (dd, J = 22.6, 9.4 Hz, 1H), 4.21 – 3.88 (m, 4H), 1.21 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H). \(^{13}\)C NMR (101 MHz, DMSO) δ 161.52, 161.47, 150.77, 150.64, 138.56, 138.03, 137.97, 131.07, 129.29, 128.28, 126.88, 126.75, 126.71, 124.19, 122.68, 119.27, 119.24, 117.62, 117.30, 115.59, 112.99, 99.99, 63.35, 63.29, 63.16, 63.09, 47.66, 46.10, 40.60, 40.39, 40.18, 39.97, 39.76, 39.56, 39.35, 16.76, 16.71, 16.59, 16.53. ESI-HRMS m/z Calc for C\(_{21}\)H\(_{22}\)F\(_3\)N\(_2\)O\(_4\)P [M+Na]\(^+\): 477.1167; found: 477.1165.

Fig. 25. Chemical structure of compound 4a

Fig. 26. \(^1\)H NMR of compound 4a
Fig. 27. 13C NMR of compound $4\alpha_7$

Fig. 28. ESI-HRMS of compound $4\alpha_6$
4b₁: Yield 38.61%, ¹H NMR (500 MHz, DMSO) δ 11.87 (s, 1H), 8.05 (d, J = 3.7 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 4.48 (d, J = 21.9 Hz, 1H), 4.14 – 4.05 (m, 2H), 3.96 – 3.84 (m, 2H), 2.40 (ddd, J = 25.7, 13.6, 7.0 Hz, 2H), 1.36 (dt, J = 14.0, 7.0 Hz, 2H), 1.26 (ddd, J = 16.7, 10.7, 5.3 Hz, 5H), 1.08 (t, J = 7.0 Hz, 3H), 0.82 (t, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.86, 161.82, 137.44, 137.39, 136.41, 131.83, 131.39, 129.77, 127.65, 119.50, 119.47, 115.29, 62.87, 62.82, 62.39, 62.34, 53.21, 51.97, 47.65, 47.53, 40.52, 40.35, 40.02, 39.85, 39.68, 39.52, 31.85, 20.83, 20.18, 16.80, 16.76, 16.64, 16.60, 14.28. ESI-HRMS m/z Calc for C₁₉H₂₉N₂O₄P [M+H]⁺: 381.1943; found: 381.1953.

Fig. 29. Chemical structure of compound 4b₁

Fig. 30. ¹H NMR of compound 4b₁
Fig. 31. 13C NMR of compound 4b$_1$

Fig. 32. ESI-HRMS of compound 4b$_1$
4b2: Yield 75.87%. 1H NMR (400 MHz, DMSO) δ 11.88 (s, 1H), 8.01 (d, $J = 3.6$ Hz, 1H), 7.38 – 7.27 (m, 2H), 7.21 (d, $J = 8.3$ Hz, 1H), 6.85 (d, $J = 8.2$ Hz, 2H), 6.61 (d, $J = 8.3$ Hz, 2H), 6.12 (dd, $J = 10.4$, 6.2 Hz, 1H), 5.26 (dd, $J = 24.5$, 10.5 Hz, 1H), 4.11 (p, $J = 7.2$ Hz, 2H), 4.02 – 3.82 (m, 2H), 2.31 (s, 3H), 2.08 (s, 3H), 1.22 (t, $J = 7.0$ Hz, 3H), 1.07 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 161.58, 161.53, 145.14, 144.99, 137.44, 137.37, 136.46, 132.05, 131.60, 129.99, 129.76, 127.57, 126.27, 119.35, 119.32, 115.39, 113.87, 63.20, 63.13, 62.93, 62.86, 48.37, 46.82, 40.59, 40.38, 40.17, 39.96, 39.75, 39.54, 39.34, 20.78, 20.46, 16.79, 16.74, 16.60, 16.54. ESI-HRMS m/z Calc for C_{22}H_{27}N_{2}O_{4}P [M+Na]$: 437.160; found: 437.1616.

Fig. 33. Chemical structure of compound 4b2

Fig. 34. 1H NMR of compound 4b2
Fig. 35. 13C NMR of compound 4b$_2$

Fig. 36. ESI-HRMS of compound 4b$_2$
4b_3: Yield 71.80%. 1H NMR (500 MHz, DMSO) δ 11.89 (s, 1H), 8.02 (d, $J = 3.7$ Hz, 1H), 7.36 (s, 1H), 7.31 (d, $J = 8.4$ Hz, 1H), 7.21 (d, $J = 8.4$ Hz, 1H), 6.92 (t, $J = 7.8$ Hz, 1H), 6.56 (s, 1H), 6.49 (dd, $J = 8.1$, 1.8 Hz, 1H), 6.39 (d, $J = 7.4$ Hz, 1H), 6.21 (dd, $J = 10.3$, 6.2 Hz, 1H), 5.29 (dd, $J = 24.4$, 10.3 Hz, 1H), 4.12 – 3.86 (m, 4H), 2.31 (s, 3H), 2.13 (s, 3H), 1.25 (t, $J = 7.1$ Hz, 1H), 1.21 (d, $J = 7.0$ Hz, 3H), 1.08 (t, $J = 7.0$ Hz, 3H).13C NMR (126 MHz, DMSO) δ 161.55, 161.51, 147.46, 147.35, 138.32, 137.49, 137.44, 136.47, 132.06, 131.62, 130.00, 129.20, 127.60, 119.36, 119.34, 118.66, 115.41, 114.48, 110.79, 63.19, 63.14, 62.94, 62.89, 48.00, 46.76, 40.49, 40.42, 40.32, 40.25, 40.16, 39.99, 39.82, 39.66, 39.49, 21.77, 20.77, 16.77, 16.73, 16.59, 16.54. ESI-HRMS m/z Calc for C$_{22}$H$_{27}$N$_2$O$_4$P [M-H]: 413.1681; found: 413.1681.

![Fig. 37. Chemical structure of compound 4b_3](image1)

![Fig. 38. 1H NMR of compound 4b_3](image2)
Fig. 39. 13C NMR of compound 4b$_3$

Fig. 40. ESI-HRMS of compound 4b$_2$
4b4: Yield 71.72%, 1H NMR (500 MHz, DMSO) δ 11.89 (s, 1H), 8.03 (d, $J = 3.7$ Hz, 1H), 7.35 (s, 1H), 7.31 (d, $J = 8.4$ Hz, 1H), 7.22 (d, $J = 8.4$ Hz, 1H), 7.04 (dd, $J = 8.4$, 7.4 Hz, 2H), 6.71 (d, $J = 7.8$ Hz, 2H), 6.56 (t, $J = 7.3$ Hz, 1H), 6.32 (dd, $J = 10.2$, 6.3 Hz, 1H), 5.30 (dd, $J = 24.4$, 10.2 Hz, 1H), 4.13 – 3.86 (m, 4H), 2.31 (s, 3H), 1.27 – 1.24 (m, 1H), 1.22 (t, $J = 7.0$ Hz, 3H), 1.08 (t, $J = 7.0$ Hz, 3H).

13C NMR (126 MHz, DMSO) δ 161.56, 161.52, 147.45, 147.34, 137.53, 137.48, 136.47, 132.10, 131.65, 129.85, 129.34, 127.61, 119.35, 119.32, 117.76, 115.43, 113.67, 63.23, 63.18, 62.99, 62.93, 47.98, 46.73, 40.46, 40.38, 40.29, 40.21, 40.12, 40.05, 39.96, 39.79, 39.62, 39.46, 20.76, 16.76, 16.72, 16.57, 16.53.

ESI-HRMS m/z Calc for C$_{21}$H$_{25}$N$_2$O$_4$P $[M+Na]^+$: 423.1450; found: 423.1451.

Fig. 41. Chemical structure of compound 4b4

Fig. 42. 1H NMR of compound 4b4
Fig. 43. 13C NMR of compound 4b4

Fig. 44. ESI-HRMS of compound 4b4
4b₅: Yield 76.32%. ^1^H NMR (400 MHz, DMSO) δ 12.05 (s, 1H), 8.06 (d, J = 3.4 Hz, 1H), 8.02 (d, J = 9.3 Hz, 2H), 7.96 (dd, J = 9.3, 5.6 Hz, 1H), 7.43 (s, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 9.3 Hz, 2H), 5.47 (dd, J = 22.6, 9.4 Hz, 1H), 4.16 – 3.90 (m, 4H), 2.34 (s, 3H), 1.22 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H). ^13^C NMR (101 MHz, DMSO) δ 161.27, 161.21, 153.72, 153.61, 138.23, 138.17, 137.63, 136.63, 132.53, 131.85, 128.47, 127.81, 126.43, 119.14, 119.12, 115.55, 112.42, 63.42, 63.35, 63.29, 47.73, 46.18, 40.60, 40.39, 40.18, 39.97, 39.76, 39.56, 39.35, 20.77, 16.78, 16.73, 16.59, 16.54. ESI-HRMS m/z Calc for C₂₁H₂₄N₃O₆P [M-H]^−: 444.1344; found: 444.1357.

Fig. 45. Chemical structure of compound 4b₅

Fig. 42. ^1^H NMR of compound 4b₅
Fig. 43. 13C NMR of compound $4b_5$

Fig. 44. ESI-HRMS of compound $4b_5$
4b₆: Yield 84.63%, 1H NMR (400 MHz, DMSO) δ 11.98 (s, 1H), 8.03 (d, $J = 3.5$ Hz, 1H), 7.42 – 7.37 (m, 3H), 7.34 (d, $J = 8.4$ Hz, 1H), 7.24 (d, $J = 8.4$ Hz, 1H), 7.17 (dd, $J = 9.7$, 6.1 Hz, 1H), 6.85 (d, $J = 8.7$ Hz, 2H), 5.37 (dd, $J = 23.7$, 9.7 Hz, 1H), 4.16 – 3.88 (m, 4H), 2.33 (s, 3H), 1.22 (t, $J = 7.0$ Hz, 3H), 1.10 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 161.42, 161.37, 150.79, 150.66, 137.80, 137.74, 136.55, 132.32, 131.74, 129.16, 127.70, 126.88, 126.73, 126.69, 124.20, 119.23, 119.20, 117.58, 117.27, 116.95, 115.49, 113.00, 63.31, 63.25, 63.16, 63.09, 47.66, 46.11, 40.60, 40.39, 40.18, 39.98, 39.77, 39.56, 39.35, 20.77, 16.77, 16.72, 16.59, 16.53. ESI-HRMS m/z Calc for C_{21}H_{24}F_{2}N_{2}O_{4}P $[M+Na]^+$: 441.1355; found: 441.1368.

![Chemical structure of compound 4b₆](image)

Fig. 45. Chemical structure of compound 4b₆

![1H NMR of compound 4b₆](image)

Fig. 46.1H NMR of compound 4b₆
Fig. 47. 13C NMR of compound 4b$_6$

Fig. 48. ESI-HRMS of compound 4b$_6$
4b : Yield 59.59%, 1H NMR (500 MHz, DMSO) δ 11.76 (s, 1H), 8.00 (d, $J = 3.6$ Hz, 1H), 7.25 (d, $J = 8.9$ Hz, 1H), 7.18 (d, $J = 2.5$ Hz, 1H), 7.14 (dd, $J = 8.9, 2.6$ Hz, 1H), 4.48 (d, $J = 21.8$ Hz, 1H), 4.13 – 4.05 (m, 2H), 3.94 – 3.85 (m, 2H), 3.79 (s, 3H), 2.49 – 2.31 (m, 2H), 1.35 (dd, $J = 14.0, 7.0$ Hz, 2H), 1.30 – 1.22 (m, 8H), 1.08 (t, $J = 7.0$ Hz, 3H), 0.83 (t, $J = 7.2$ Hz, 3H). 13C NMR (126 MHz, DMSO) δ 161.52, 161.47, 154.73, 137.33, 137.28, 132.91, 130.20, 120.11, 119.90, 116.69, 109.52, 62.91, 62.85, 62.44, 62.38, 55.93, 53.21, 51.97, 47.66, 47.54, 40.48, 40.41, 40.31, 40.24, 40.15, 39.98, 39.81, 39.65, 39.48, 31.85, 20.17, 16.79, 16.75, 16.64, 16.60, 14.27, 8.41. ESI-HRMS m/z Calc for C$_{22}$H$_{34}$F$_3$N$_4$O$_4$P [M+Na]$^+$: 491.1323; found: 491.1328.

Fig. 49. Chemical structure of compound 4b.

Fig. 50. 1H NMR of compound 4b.
Fig. 51. 13C NMR of compound 4b$_7$

Fig. 52. ESI-HRMS of compound 4b$_7$
4c₁: Yield 59.59%, 1H NMR (500 MHz, DMSO) δ 11.76 (s, 1H), 8.00 (d, J = 3.6 Hz, 1H), 7.25 (d, J = 8.9 Hz, 1H), 7.18 (d, J = 2.5 Hz, 1H), 7.14 (dd, J = 8.9, 2.6 Hz, 1H), 4.48 (d, J = 21.8 Hz, 1H), 4.13 – 4.05 (m, 2H), 3.94 – 3.85 (m, 2H), 3.79 (s, 3H), 2.49 – 2.31 (m, 2H), 1.35 (dd, J = 14.0, 7.0 Hz, 2H), 1.30 – 1.22 (m, 8H), 1.08 (t, J = 7.0 Hz, 3H), 0.83 (t, J = 7.2 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 161.52, 161.47, 154.73, 137.33, 137.28, 132.91, 130.20, 120.11, 119.90, 116.69, 109.52, 62.91, 62.85, 62.44, 62.38, 55.93, 53.21, 51.97, 47.66, 47.54, 40.48, 40.41, 40.31, 40.24, 40.15, 39.98, 39.81, 39.65, 39.48, 31.85, 20.17, 16.79, 16.75, 16.64, 16.60, 14.27. 8.41. ESI-HRMS m/z Calc for C$_{19}$H$_{29}$N$_2$O$_5$P [M+H]$^+$: 397.1892; found: 397.1908.

Fig. 53. Chemical structure of compound 4c₁

![Chemical structure of compound 4c₁]

Fig. 54. 1H NMR of compound 4c₁

![1H NMR of compound 4c₁]
Fig. 55. 13C NMR of compound 4c₁

Fig. 56. ESI-HRMS of compound 4c₁
4c2: Yield 79.27%. 1H NMR (500 MHz, DMSO) δ 11.86 (s, 1H), 8.02 (d, $J = 3.7$ Hz, 1H), 7.25 (d, $J = 9.0$ Hz, 1H), 7.13 (dd, $J = 8.9$, 2.6 Hz, 1H), 7.07 (d, $J = 2.7$ Hz, 1H), 6.85 (d, $J = 8.3$ Hz, 2H), 6.61 (d, $J = 8.5$ Hz, 2H), 6.06 (dd, $J = 10.1$, 6.6 Hz, 1H), 5.26 (dd, $J = 24.6$, 10.2 Hz, 1H), 4.12 (dq, $J = 14.2$, 7.1 Hz, 2H), 4.01 – 3.86 (m, 2H), 3.76 (s, 3H), 2.09 (s, 3H), 1.23 (t, $J = 7.0$ Hz, 3H), 1.08 (t, $J = 7.0$ Hz, 3H). 13C NMR (126 MHz, DMSO) δ 161.22, 161.18, 154.78, 145.06, 144.94, 137.19, 137.14, 132.97, 130.46, 129.77, 126.28, 120.16, 119.96, 119.94, 116.83, 113.81, 109.33, 63.19, 63.14, 62.95, 62.90, 55.90, 48.33, 47.09, 40.50, 40.42, 40.33, 40.26, 40.17, 40.00, 39.83, 39.67, 39.50, 20.45, 16.77, 16.73, 16.59, 16.55. ESI-HRMS m/z Calc for C$_{22}$H$_2$N$_2$O$_5$P [M+H]$^+$: 431.1736; found: 431.1742.

Fig. 57. Chemical structure of compound 4c$_2$

![Chemical structure of compound 4c$_2$](image)

Fig. 58. 1H NMR of compound 4c$_2$

![1H NMR of compound 4c$_2$](image)
Fig. 59. 13C NMR of compound $4c_2$

Fig. 60. ESI-HRMS of compound $4c_2$
4c: Yield 74.36%, 1H NMR (500 MHz, DMSO) δ 11.87 (s, 1H), 8.04 (d, $J = 3.6$ Hz, 1H), 7.25 (d, $J = 8.9$ Hz, 1H), 7.14 (dd, $J = 8.9$, 2.6 Hz, 1H), 7.09 (d, $J = 2.7$ Hz, 1H), 6.92 (t, $J = 7.8$ Hz, 1H), 6.56 (s, 1H), 6.48 (d, $J = 8.1$ Hz, 1H), 6.39 (d, $J = 7.4$ Hz, 1H), 6.17 (dd, $J = 10.0$, 6.5 Hz, 1H), 5.29 (dd, $J = 24.5$, 10.0 Hz, 1H), 4.11 (dq, $J = 14.2$, 7.1 Hz, 2H), 4.01 – 3.87 (m, 2H), 3.77 (s, 3H), 2.13 (s, 3H), 1.24 (dt, $J = 14.1$, 7.0 Hz, 4H), 1.09 (t, $J = 7.0$ Hz, 3H). 13C NMR (126 MHz, DMSO) δ 161.20, 161.16, 154.80, 147.39, 147.27, 138.35, 137.25, 137.20, 132.99, 130.46, 129.23, 120.20, 119.97, 118.67, 116.85, 114.44, 110.70, 109.36, 63.21, 63.16, 62.99, 62.93, 55.91, 48.03, 46.79, 40.48, 40.41, 40.32, 40.24, 40.15, 39.98, 39.82, 39.65, 39.48, 21.77, 16.77, 16.72, 16.59, 16.55. ESI-HRMS m/z Calc for C$_{22}$H$_{27}$N$_5$O$_5$P [M+Na]$^+$: 453.1555; found: 453.1574.

![Chemical structure of compound 4c](image)

Fig. 61. Chemical structure of compound 4c

![NMR spectrum of compound 4c](image)

Fig. 62. 1H NMR of compound 4c
Fig. 63. 13C NMR of compound 4c$_3$

Fig. 64. ESI-HRMS of compound 4c$_3$
4c: Yield 77%, 1H NMR (500 MHz, DMSO) δ 11.88 (s, 1H), 8.04 (d, $J = 3.6$ Hz, 1H), 7.26 (d, $J = 8.9$ Hz, 1H), 7.14 (dd, $J = 8.9, 2.7$ Hz, 1H), 7.09 (d, $J = 2.7$ Hz, 1H), 7.05 (dd, $J = 8.3, 7.5$ Hz, 2H), 6.70 (d, $J = 8.1$ Hz, 2H), 6.57 (t, $J = 7.3$ Hz, 1H), 6.28 (dd, $J = 9.9, 6.6$ Hz, 1H), 5.30 (dd, $J = 24.5, 10.0$ Hz, 1H), 4.15 – 4.09 (m, 2H), 4.02 – 3.88 (m, 2H), 3.76 (s, 3H), 1.27 – 1.24 (m, 1H), 1.22 (t, $J = 7.0$ Hz, 3H), 1.09 (t, $J = 7.0$ Hz, 3H). 13C NMR (126 MHz, DMSO) δ 161.21, 161.17, 154.81, 147.38, 147.27, 137.31, 137.26, 132.97, 130.30, 129.36, 120.24, 119.96, 119.94, 117.78, 116.88, 113.62, 109.36, 63.26, 63.20, 63.04, 62.98, 55.90, 48.03, 46.79, 40.44, 40.27, 40.11, 39.94, 39.77, 39.60, 39.44, 16.75, 16.71, 16.58, 16.53. ESI-HRMS m/z Calc for C$_{21}$H$_{25}$N$_2$O$_5$P [M+Na]$^+$: 439.1399; found: 439.1403.

Fig. 65. Chemical structure of compound 4c

Fig. 66. 1H NMR of compound 4c
Fig. 67. 13C NMR of compound 4c$_4$

Fig. 68. ESI-HRMS of compound 4c$_4$
4c₅: Yield 80.08%, ¹H NMR (400 MHz, DMSO) δ 12.03 (s, 1H), 8.07 (d, J = 3.4 Hz, 1H), 8.02 (d, J = 9.3 Hz, 2H), 7.94 (dd, J = 9.1, 6.1 Hz, 1H), 7.29 (d, J = 8.8 Hz, 1H), 7.18 (dt, J = 8.1, 2.6 Hz, 2H), 6.85 (d, J = 9.2 Hz, 2H), 5.46 (dd, J = 22.7, 9.1 Hz, 1H), 4.18 – 3.93 (m, 4H), 3.79 (s, 3H), 1.22 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 160.91, 160.85, 154.89, 153.69, 153.58, 137.98, 137.93, 137.63, 133.13, 128.91, 126.43, 120.71, 119.76, 119.73, 117.00, 109.47, 63.43, 63.38, 63.31, 55.95, 47.82, 46.27, 40.60, 40.39, 40.18, 39.97, 39.77, 39.56, 39.35, 16.78, 16.72, 16.60, 16.55. ESI-HRMS m/z Calc for C₂₁H₂₄N₃O₇P [M+Na]⁺: 484.1250; found: 484.1273.

![Chemical structure of compound 4c₅](image1)

Fig. 69. Chemical structure of compound 4c₅

![¹H NMR of compound 4c₅](image2)

Fig. 70.¹H NMR of compound 4c₅
Fig. 71. 13C NMR of compound $4c_5$

Fig. 72. ESI-HRMS of compound $4c_5$
$4c_6$: Yield 86.00%. 1H NMR (400 MHz, DMSO) δ 11.90 (s, 1H), 8.03 (d, $J = 3.6$ Hz, 1H), 7.26 (d, $J = 9.0$ Hz, 1H), 7.15 (dd, $J = 8.9$, 2.6 Hz, 1H), 7.09 (d, $J = 2.6$ Hz, 1H), 6.90 (t, $J = 8.9$ Hz, 2H), 6.74 – 6.66 (m, 2H), 6.33 (dd, $J = 9.9$, 6.7 Hz, 1H), 5.24 (dd, $J = 24.4$, 10.0 Hz, 1H), 4.15 – 3.84 (m, 4H), 3.77 (s, 3H), 1.23 (t, $J = 7.0$ Hz, 3H), 1.08 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 161.21, 161.16, 156.64, 154.79, 154.33, 144.05, 143.90, 137.31, 137.25, 132.99, 130.14, 120.31, 119.90, 119.87, 116.88, 115.87, 115.65, 115.43, 115.06, 114.99, 114.53, 114.45, 109.28, 63.23, 63.17, 63.02, 62.95, 55.90, 48.57, 47.02, 40.61, 40.40, 40.19, 39.98, 39.77, 39.56, 39.35, 16.79, 16.74, 16.60, 16.54. ESI-HRMS m/z Calc for C$_{21}$H$_{24}$FN$_2$O$_5$P [M+Na]$^+$: 457.1305; found: 457.1323.

![Fig. 73. Chemical structure of compound 4c6](image)

![Fig. 74. 1H NMR of compound 4c6](image)
Fig. 75. 13C NMR of compound 4c$_6$

Fig. 76. ESI-HRMS of compound 4c$_6$
4c: Yield 74.08%. 1H NMR (400 MHz, DMSO) δ 11.96 (s, 1H), 8.04 (d, $J = 3.6$ Hz, 1H), 7.39 (d, $J = 8.7$ Hz, 2H), 7.27 (d, $J = 8.9$ Hz, 1H), 7.15 (ddd, $J = 13.0$, 7.7, 2.6 Hz, 3H), 6.84 (d, $J = 8.6$ Hz, 2H), 5.36 (dd, $J = 23.8$, 9.4 Hz, 1H), 4.15 – 3.89 (m, 4H), 3.78 (s, 3H), 1.22 (t, $J = 7.0$ Hz, 3H), 1.10 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 161.06, 161.01, 154.84, 150.74, 150.61, 137.55, 137.49, 133.05, 129.59, 126.89, 126.70, 124.20, 120.49, 119.83, 119.80, 117.57, 117.25, 116.93, 112.96, 109.36, 63.32, 63.26, 63.19, 63.12, 55.91, 47.73, 46.18, 40.60, 40.39, 40.18, 39.97, 39.76, 39.56, 39.35, 16.77, 16.72, 16.60, 16.54. ESI-HRMS m/z Calc for C$_{21}$H$_{24}$F$_2$N$_2$O$_5$P [M+Na]$^+$: 507.1273; found: 507.1252.

![Fig. 77. Chemical structure of compound 4c](image)

![Fig. 78. 1H NMR of compound 4c](image)
Fig. 79. 13C NMR of compound 4c$_7$

Fig. 80. ESI-HRMS of compound 4c$_7$
4d1: Yield 43.26%, 1H NMR (400 MHz, DMSO) δ 11.80 (s, 1H), 7.92 (d, $J = 3.4$ Hz, 1H), 7.17 (s, 1H), 6.83 (s, 1H), 6.10 (s, 2H), 4.44 (d, $J = 21.4$ Hz, 1H), 4.08 (ddd, $J = 10.2$, 8.7, 5.3 Hz, 2H), 3.97 – 3.82 (m, 2H), 2.50 – 2.34 (m, 2H), 1.40 – 1.22 (m, 10H), 1.08 (t, $J = 7.0$ Hz, 3H), 0.83 (t, $J = 7.2$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 174.78, 161.75, 161.69, 150.38, 143.78, 137.65, 137.58, 135.35, 130.11, 126.35, 113.81, 113.78, 105.58, 102.20, 95.38, 62.85, 62.78, 62.41, 62.34, 53.17, 51.62, 47.63, 47.47, 31.78, 30.84, 29.56, 29.51, 29.46, 29.31, 29.18, 29.06, 27.02, 25.59, 22.58, 20.18, 16.82, 16.77, 16.66, 16.61, 14.42, 14.30. ESI-HRMS m/z Calc for C$_{19}$H$_{27}$N$_2$O$_6$P $[\text{M+H}]^+$: 411.1585; found: 411.1519.

![Chemical structure of compound 4d1](image)

Fig. 81. Chemical structure of compound 4d$_1$

![1H NMR of compound 4d1](image)

Fig. 82. 1H NMR of compound 4d$_1$
Fig. 83. 13C NMR of compound 4d$_1$

Fig. 84. ESI-HRMS of compound 4d$_1$
4d₂: Yield 66.81%, 1H NMR (500 MHz, DMSO) δ 11.85 (s, 1H), 7.92 (d, J = 3.5 Hz, 1H), 7.08 (s, 1H), 6.85 (d, J = 8.3 Hz, 2H), 6.82 (s, 1H), 6.60 (d, J = 8.5 Hz, 2H), 6.07 (s, 2H), 6.02 (dd, J = 10.1, 6.5 Hz, 1H), 5.20 (dd, J = 24.3, 10.1 Hz, 1H), 4.10 (dq, J = 14.2, 7.1 Hz, 2H), 4.01 – 3.83 (m, 2H), 2.09 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.0 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 161.44, 161.40, 150.49, 145.13, 145.01, 143.88, 137.47, 137.42, 135.47, 129.74, 126.68, 126.18, 113.79, 113.70, 113.68, 105.44, 102.22, 95.45, 63.10, 63.05, 62.89, 62.83, 48.14, 46.90, 40.49, 40.42, 40.33, 40.25, 40.16, 39.99, 39.83, 39.66, 39.49, 20.45, 16.77, 16.72, 16.59, 16.54. ESI-HRMS m/z Calc for C$_{22}$H$_{32}$N$_2$O$_6$P [M+Na]$^+$: 467.1348; found: 467.1381.

Fig. 85. Chemical structure of compound 4d₂

Fig. 86. 1H NMR of compound 4d₂
Fig. 87. 13C NMR of compound 4d$_2$

Fig. 88. ESI-HRMS of compound 4d$_2$
4d₁: Yield 77.29%, 1H NMR (400 MHz, DMSO) δ 11.94 (s, 1H), 7.95 (d, $J = 3.3$ Hz, 1H), 7.10 (s, 1H), 6.89 (dd, $J = 15.8$, 7.0 Hz, 3H), 6.70 (dd, $J = 8.9$, 4.5 Hz, 2H), 6.30 (dd, $J = 9.8$, 6.6 Hz, 1H), 6.08 (s, 2H), 5.19 (dd, $J = 24.2$, 10.0 Hz, 1H), 4.16 – 4.06 (m, 2H), 3.94 (ddt, $J = 25.1$, 10.0, 7.5 Hz, 2H), 3.06 (d, $J = 7.2$ Hz, 1H), 1.21 (q, $J = 7.2$ Hz, 6H), 1.09 (t, $J = 7.0$ Hz, 3H).13C NMR (101 MHz, DMSO) δ 161.46, 161.41, 156.62, 154.31, 150.58, 144.14, 143.98, 143.94, 137.63, 137.57, 135.54, 130.11, 126.31, 115.84, 115.63, 114.53, 114.46, 113.69, 113.66, 105.47, 102.28, 95.51, 63.18, 63.12, 62.99, 62.92, 48.40, 46.84, 45.82, 40.56, 40.35, 40.14, 39.93, 39.73, 39.52, 39.31, 35.59, 31.75, 30.84, 29.45, 29.17, 29.04, 27.01, 25.60, 22.57, 16.78, 16.73, 16.60, 16.54, 14.41, 8.89. ESI-HRMS m/z Calc for C$_{22}$H$_{25}$N$_2$O$_6$P [M-H]$^-$: 443.1372; found: 443.1727.

Fig. 89. Chemical structure of compound 4d₁

Fig. 90. 1H NMR of compound 4d₁
Fig. 91. 13C NMR of compound 4d$_3$

Fig. 92. ESI-HRMS of compound 4d$_3$
4d: Yield 77.32%, 1HNMR (500 MHz, DMSO) δ 11.87 (s, 1H), 7.94 (d, $J = 3.4$ Hz, 1H), 7.09 (s, 1H), 7.04 (dd, $J = 8.3$, 7.5 Hz, 2H), 6.82 (s, 1H), 6.70 (d, $J = 7.8$ Hz, 2H), 6.56 (t, $J = 7.3$ Hz, 1H), 6.25 (dd, $J = 9.9$, 6.6 Hz, 1H), 6.07 (s, 2H), 5.23 (dd, $J = 24.2$, 9.9 Hz, 1H), 4.10 (dq, $J = 14.2$, 7.1 Hz, 2H), 4.02 – 3.84 (m, 2H), 1.22 (t, $J = 7.1$ Hz, 3H), 1.08 (t, $J = 7.0$ Hz, 3H). 13C NMR (126 MHz, DMSO) δ 161.43, 161.38, 150.54, 147.49, 147.38, 143.92, 137.56, 137.52, 135.52, 129.32, 126.57, 117.65, 113.70, 113.68, 113.59, 105.48, 102.25, 95.48, 63.13, 63.08, 62.95, 62.89, 47.83, 46.58, 40.49, 40.42, 40.33, 40.25, 40.16, 39.99, 39.82, 39.66, 39.49, 16.76, 16.72, 16.59, 16.54. ESI-HRMS m/z Calc for C$_{21}$H$_{23}$N$_2$O$_6$P [M+Na]$^+$: 453.1191; found: 453.1169.

Fig. 93. Chemical structure of compound 4d.

Fig. 94. 1H NMR of compound 4d.
Fig. 95. 13C NMR of compound 4d₁

Fig. 96. ESI-HRMS of compound 4d₁
4d₅: Yield 73.71%, ¹H NMR (400 MHz, DMSO) δ 12.02 (s, 1H), 8.08 – 7.93 (m, 4H), 7.18 (s, 1H), 6.84 (s, 3H), 6.10 (s, 2H), 5.40 (dd, J = 22.4, 9.2 Hz, 1H), 4.13 – 3.91 (m, 4H), 1.20 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 161.16, 161.10, 153.75, 153.65, 150.89, 144.09, 138.24, 138.18, 137.54, 136.93, 135.78, 126.44, 125.10, 113.55, 113.52, 112.29, 105.67, 102.38, 95.51, 63.34, 63.32, 63.28, 63.25, 47.62, 46.06, 40.59, 40.38, 40.17, 39.97, 39.76, 39.55, 39.34, 16.78, 16.72, 16.60, 16.54, -14.99. ESI-HRMS m/z Calc for C₃₁H₂₂N₄O₈P [M+Na]⁺: 498.1042; found: 498.1064.

Fig. 97. Chemical structure of compound 4d₅

Fig. 98. ¹H NMR of compound 4d₅
Fig. 99. 13C NMR of compound 4d$_5$

Fig. 100. ESI-HRMS of compound 4d$_5$
4d₆: Yield 85.70%, 1H NMR (400 MHz, DMSO) δ 11.98 (s, 1H), 7.94 (d, $J = 3.2$ Hz, 1H), 7.38 (d, $J = 8.6$ Hz, 2H), 7.15 – 7.06 (m, 2H), 6.88 – 6.79 (m, 3H), 6.08 (s, 2H), 5.29 (dd, $J = 23.5$, 9.4 Hz, 1H), 4.13 – 4.07 (m, 2H), 4.02 – 3.86 (m, 3H), 1.26 – 1.18 (m, 6H), 1.09 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 161.32, 150.72, 144.01, 137.81, 135.65, 126.71, 125.77, 113.63, 112.94, 105.56, 102.32, 95.52, 63.27, 63.20, 63.15, 63.08, 47.54, 45.97, 40.54, 40.33, 40.12, 39.91, 39.70, 39.50, 39.29, 29.02, 22.56, 16.76, 16.71, 16.59, 16.53. ESI-HRMS m/z Calc for C$_{21}$H$_{22}$F$_{2}$O$_{6}$P [M+Na]$^+$: 471.1097; found: 471.1118.

Fig. 101. Chemical structure of compound 4d₆

Fig. 102. 1H NMR of compound 4d₆
Fig. 103. 13C NMR of compound 4d$_6$

Fig. 104. ESI-HRMS of compound 4d$_6$
4d₇: Yield 75.49%, ¹H NMR (400 MHz, DMSO) δ 11.94 (s, 1H), 7.95 (d, <i>J</i> = 3.3 Hz, 1H), 7.10 (s, 1H), 6.89 (dd, <i>J</i> = 15.8, 7.0 Hz, 3H), 6.70 (dd, <i>J</i> = 8.9, 4.5 Hz, 2H), 6.30 (dd, <i>J</i> = 9.8, 6.6 Hz, 1H), 6.08 (s, 2H), 5.19 (dd, <i>J</i> = 24.2, 10.0 Hz, 1H), 4.17 – 4.06 (m, 2H), 4.03 – 3.83 (m, 2H), 3.06 (d, <i>J</i> = 7.2 Hz, 1H), 1.21 (q, <i>J</i> = 7.2 Hz, 6H). ¹³C NMR (101 MHz, DMSO) δ 161.03 (d, <i>J</i> = 5.4 Hz), 154.84 (s), 150.68 (d, <i>J</i> = 12.7 Hz), 137.52 (d, <i>J</i> = 6.0 Hz), 133.05 (s), 129.59 (s), 126.79 (d, <i>J</i> = 19.3 Hz), 120.49 (s), 119.82 (d, <i>J</i> = 3.1 Hz), 117.57 (s), 117.25 (s), 116.93 (s), 112.96 (s), 109.36 (s), 63.22 (dd, <i>J</i> = 14.0, 6.9 Hz), 55.91 (s), 47.73 (s), 46.18 (s), 40.60 (s), 40.39 (s), 40.18 (s), 39.97 (s), 39.76 (s), 39.56 (s), 39.35 (s), 16.66 (dd, <i>J</i> = 17.6, 5.4 Hz). ESI-HRMS m/z Calc for C₂₂H₂₂F₃N₂O₆P [M+Na]⁺: 521.1065; found: 521.1089.

![Chemical structure of compound 4d₇](image)

Fig. 101. Chemical structure of compound 4d₇

![¹H NMR of compound 4d₇](image)

Fig. 102.¹H NMR of compound 4d₇
Fig. 103. 13C NMR of compound 4d$_7$

Fig. 104. ESI-HRMS of compound 4d$_7$
5a: Yield 70.81%. 1H NMR (400 MHz, DMSO) δ 11.68 (s, 1H), 7.72 (d, J = 2.6 Hz, 1H), 6.86 (s, 1H), 6.69 (t, J = 7.7 Hz, 1H), 6.60 (s, 1H), 6.33 (s, 1H), 6.26 (d, J = 8.0 Hz, 1H), 6.16 (d, J = 7.3 Hz, 1H), 5.98 – 5.90 (m, 1H), 5.85 (s, 2H), 5.01 (dd, J = 24.2, 10.0 Hz, 1H), 3.93 – 3.82 (m, 2H), 3.79 – 3.62 (m, 2H), 1.91 (s, 3H), 0.99 (t, J = 7.0 Hz, 3H), 0.86 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 161.44, 161.38, 150.52, 147.49, 147.35, 143.91, 138.31, 137.56, 137.49, 135.49, 129.20, 126.69, 118.57, 114.40, 113.71, 113.68, 110.68, 105.46, 102.25, 95.46, 63.14, 63.08, 62.94, 62.87, 47.92, 46.36, 46.03, 21.78, 16.78, 16.73, 16.60, 16.54. ESI-HRMS m/z Calc for C$_{21}$H$_{23}$N$_2$O$_4$P [M+H]$^+$: 399.1474; found: 339.1476.

Fig. 105. Chemical structure of compound 5a

Fig. 106. 1H NMR of compound 5a
Fig. 107. 13C NMR of compound 5a

Fig. 108. ESI-HRMS of compound 5a
5b: Yield 63.13%, 1H NMR (400 MHz, DMSO) δ 12.10 (s, 1H), 8.79 (s, 1H), 8.59 (s, 1H), 7.67 (s, 1H), 7.42 (dd, $J = 8.4, 1.7$ Hz, 1H), 7.34 (dd, $J = 8.5, 2.3$ Hz, 2H), 7.25 (dd, $J = 12.0, 8.3$ Hz, 3H), 3.97 (dq, $J = 14.2, 7.1$ Hz, 4H), 3.27 (d, $J = 21.5$ Hz, 2H), 2.36 (s, 3H), 1.19 (t, $J = 7.0$ Hz, 6H). 13C NMR (101 MHz, DMSO) δ 161.91, 155.52, 150.44, 150.40, 138.36, 137.77, 133.82, 131.91, 131.19, 131.13, 130.97, 130.88, 129.41, 126.80, 121.47, 121.44, 119.29, 115.60, 61.90, 61.84, 40.60, 40.40, 40.19, 39.98, 39.77, 39.56, 39.35, 32.93, 31.59, 20.87, 16.72, 16.66. ESI-HRMS m/z Calc for C$_{23}$H$_{25}$N$_2$O$_4$P [M-H]: 411.1474; found: 411.1549.

Fig. 109. Chemical structure of compound 5b

Fig. 110. 1H NMR of compound 5b
Fig. 111. 13C NMR of compound 5b

Fig. 112. ESI-HRMS of compound 5b
5c: Yield 64.65%. 1H NMR (500 MHz, DMSO) δ 12.06 (s, 1H), 8.80 (s, 1H), 8.64 (s, 1H), 7.46 (d, J = 2.7 Hz, 1H), 7.34 (dd, J = 8.4, 2.3 Hz, 2H), 7.30 (d, J = 8.9 Hz, 1H), 7.24 (dd, J = 8.9, 2.8 Hz, 3H), 3.96 (dd, J = 15.1, 7.1 Hz, 4H), 3.26 (d, J = 21.5 Hz, 2H), 1.18 (t, J = 7.0 Hz, 6H). 13C NMR (126 MHz, DMSO) δ 190.33, 161.58, 155.45, 154.95, 150.38, 150.35, 137.62, 135.01, 131.19, 131.14, 131.02, 130.94, 127.13, 122.03, 121.45, 121.43, 119.94, 116.98, 110.97, 61.90, 61.85, 55.99, 40.52, 40.45, 40.36, 40.28, 40.19, 40.02, 39.85, 39.69, 39.52, 32.85, 31.78, 16.70, 16.66, 1.60. ESI-HRMS m/z Calc for $C_{22}H_{25}N_2O_5P$ [M+Na]$^+$: 451.1399; found: 451.1404.

Fig. 113. Chemical structure of compound 5c

Fig. 114. 1H NMR of compound 5c
Fig. 115. 13C NMR of compound 5c

Fig. 116. ESI-HRMS of compound 5c
5d: Yield 70.98%, 1H NMR (400 MHz, d-DMSO) δ 12.08 (s, 1H), 8.74 (s, 1H), 8.56 (s, 1H), 7.38 (d, J = 8.7 Hz, 2H), 7.32 (dd, J = 8.4, 2.3 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.15 (d, J = 8.2 Hz, 2H), 3.97 (dd, J = 8.0, 7.2 Hz, 4H), 3.26 (d, J = 21.5 Hz, 2H), 1.19 (t, J = 7.0 Hz, 6H). 13C NMR (101 MHz, DMSO) δ 189.85, 161.90, 155.37, 153.66, 152.08, 144.53, 142.07, 140.40, 131.17, 122.90, 121.34, 113.87, 113.23, 107.29, 106.73, 103.01, 102.65, 95.37, 61.83, 32.81, 31.44, 16.71. ESI-HRMS m/z Calc for C$_{22}$H$_{23}$O$_5$P [M+H]$^+$: 443.1372; found: 443.1391.

Fig. 113. Chemical structure of compound 5d

Fig. 114. 1H NMR of compound 5d
Fig. 115. 13C NMR of compound 5d

Fig. 116. ESI-HRMS of compound 5d