Electronic Supplementary Information

Strigolactones: A plant phytohormone as novel anti-

inflammatory agents

Jun-Xia Zheng^{a‡}, Yu-Shui Han^{c‡}, Jin-Cai Wang^{c‡}, Hui Yang^c, Hao Kong^c, Kang-Jia Liu^c, Si-Yu Chen^c, Yi-Rui Chen^b, Yi-Qun Chang^c, Wei-Min Chen^c, Jia-Liang Guo^{b,*}, Ping-Hua Sun^{c,*}

a. School of Chemical Engineering and Light Industry, Guangdong University of Technology,
 Guangzhou, PR China.

b. School of Stomatology and Medicine, Foshan University, Foshan, PR China.

c. College of Pharmacy, Jinan University, Guangzhou, PR China.

*Corresponding author, Tel.:+86 2085224497, E-mail address: janalguo@126.com.

‡ These authors contributed equally to this work.

Scheme S1. Synthesis of GR24

Scheme S1. Synthesis of GR24: (a) NaH, DMC, THF, reflux, 1.5 h; (b) BrCH₂COOEt, reflux, 1.5 h; (c) HCl/AcOH, reflux, 3 h; (d) NaBH₄, NaOH, rt, 5 h; (e) p-TsOH, benzene, reflux, 3 h; (f) Na, HCO₂Me, THF, rt, 1 h; (g) THF, rt, 5 h.

Spectral date

Compounds	Spectral date
2a	$[\alpha]20 \text{ D}+440^{\circ}$ (<i>c</i> 0.5, CH ₃ Cl ₃), white solid; ¹ H NMR (300 MHz, CDCl ₃)
	δ 7.49 (t, J = 5.5 Hz, 2H), 7.38-7.21 (m, 4H), 6.99- 6.95 (m, 1H), 6.20-
	6.16 (m, 1H), 5.95 (d, J = 7.8 Hz, 1H), 4.11 (q, J = 7.1 Hz, 1H), 3.99 –
	3.89 (m, 1H), 3.44 (dd, <i>J</i> = 16.9, 9.3 Hz, 1H), 3.11 (dd, <i>J</i> = 16.9, 3.3 Hz,
	1H), 2.04 (d, $J = 2.4$ Hz, 5H), 1.25 (t, $J = 7.1$ Hz, 7H), 0.86 (dd, $J =$
	13.9, 6.6 Hz, 3H). 13 C NMR (75 MHz, CDCl ₃) δ 171.43, 170.33,
	151.12, 142.69, 141.02, 138.93, 136.18, 130.16, 127.64, 126.59, 125.25,
	113.41, 100.70, 86.06, 38.98, 37.43, 29.82, 10.90. HRMS (ESI) Found
	MNa ⁺ 321.07326
3 a	$[\alpha]$ 20 D -288° (<i>c</i> 0.5, CH ₃ Cl ₃), Other spectral date was similar to 2a
5a	$[\alpha]$ 20 D+290° (<i>c</i> 0.5, CH ₃ Cl ₃), Other spectral date was similar to 2a
6a	$[\alpha]$ 20 D -450° (<i>c</i> 0.5, CH ₃ Cl ₃), Other spectral date was similar to 2a
2b	$[\alpha]$ 20 D +401° (<i>c</i> 0.5, CH ₃ Cl ₃), white solid; ¹ H NMR (300 MHz, CDCl ₃)
	δ: 7.50 (2 H, dd, J 8.1, 5.0), 7.40 – 7.21 (4 H, m), 5.98 (1 H, d, J 7.9),
	5.87 (1 H, dt, J 16.1, 8.0), 4.01 – 3.88 (1 H, m), 3.45 (1 H, dd, J 16.8,
	9.3), 3.15 - 3.04 (1 H, m), 2.91 - 2.76 (2 H, m), 2.19 - 2.01 (1 H, m),
	1.46 (1 H, s). ¹³ C NMR (75 MHz, CDCl ₃) δ : 177.39, 171.45, 152.16,
	142.52, 138.76, 130.08, 127.50, 126.38, 125.31, 112.83, 103.02, 85.89,
	38.67, 37.48, 35.72, 33.59, 17.01. HRMS (ESI) Found MNa ⁺ 321.07326

3b	$[\alpha]$ 20 D -310° (<i>c</i> 0.5, CH ₃ Cl ₃), Other spectral date was similar to 2b
5b	$[\alpha]$ 20 D+252° (<i>c</i> 0.5, CH ₃ Cl ₃), Other spectral date was similar to 2b
6b	$[\alpha]$ 20 D -490° (<i>c</i> 0.5, CH ₃ Cl ₃), Other spectral date was similar to 2b

Docking scores

 Table S1. Result of the molecular docking scores.

Target No.	Structural No. Receptor PDB code Resolution (Resolution (Å)	Score	
1.1	1	JNK-1	4w4w	1.9	-8.5
1.2	2	JNK-2	4y46	2.04	-9.1
1.3	3	JNK-3	4qtd	1.5	-9.4
1.4	4	JNK-4	4awi	1.91	-8.8
1.5	5	JNK-5	3rip	2.3	-8.8
2.1	6	P38-1	2ewa	2.1	-9.2
2.2	7	P38-2	4zth	2.15	-9.2
2.3	8	P38-3	2bak	2.2	-9.1
2.4	9	P38-4	418m	2.1	-6.7
2.5	10	P38-5	4dli	1.91	-7.9
3.1	11	CK2-1	5m4f	1.52	-8.9
3.2	12	СК2-2	5h8g	2	-9.5
3.3	13	СК2-3	5cqu	2.35	-8.8
3.4	14	CK2-4	4ub7	2.1	-7.9
3.5	15	CK2-5	3wik	2	-9.9
4.1	16	HDAC-1	5lgt	3	-9.3
4.2	17	HDAC-2	513e	2.8	-9.4
4.3	18	HDAC-3	5iwg	1.66	-7.5
4.4	19	HDAC-4	513d	2.6	-9
4.5	20	HDAC-5	4ly1	1.57	-7.6
5.1	21	PARP1-1	5ws1	1.9	-10.1
5.2	22	PARP1-2	5ds3	2.6	-9.3
5.3	23	PARP1-3	4rv6	3.19	-9.5
5.4	24	PARP1-4	5wrz	2.2	-10
5.5	25	PARP1-5	4r6e	2.2	-6.5

6.1	26	PKA C-1	5bx6	1.89	-7.6
6.2	27	PKA C-2	5izj	1.85	-9.3
6.3	28	PKA C-3	4z84	1.55	-9.1
6.4	29	PKA C-4	4wb8	1.55	-7.7
6.5	30	PKA C-5	4ib1	1.63	-8.3
7	31	NIK	4dn5	2.5	-8.6
8.1	32	RSK1-1	4nif	2.15	-9.2
8.2	33	RSK1-2	2z7q	2	-7.9
9	34	MSK1	3kn5	2.4	-8.1
10.1	35	GSK-3beta-1	5k5n	2.2	-8.9
10.2	36	GSK-3beta-2	5hlp	2.45	-8.1
10.3	37	GSK-3beta-3	5f94	2.51	-8.5
10.4	38	GSK-3beta-4	4pte	2.03	-8.6
10.5	39	GSK-3beta-5	3f7z	2.4	-8.8
11	40	СОТ	4y85	2.33	-9.5
12.1	41	AKT-1	3ocb	2.7	-8.7
12.2	42	AKT-2	4ekl	2	-8.8
12.3	43	AKT-3	3qkm	2.2	-8.9
12.4	44	AKT-4	3cqw	2	-8.7
12.5	45	AKT-5	5kcv	2.7	-9.7
13.1	46	RIP-1	5hx6	2.23	-9.2
13.2	47	RIP-2	4itj	1.8	-8.9
13.3	48	RIP-3	5j7b	2.53	-9.2
13.4	49	RIP-4	5ar5	2.66	-9.1
14.1	50	PI3K-1	5swg	3.11	-8
14.2	51	PI3K-2	5ubr	2.4	-8.2
14.3	52	PI3K-3	5t8f	2.91	-8.8
14.4	53	PI3K-4	4urk	2.9	-9.4
14.5	54	PI3K-5	4wwo	2.3	-9.3
15.1	55	PDK1-1	5lvo	1.09	-9
15.2	56	PDK1-2	5hkm	2.1	-8.7

15.3	57	PDK1-3	4xx9	1.4	-8.8
15.4	58	PDK1-4	5ack	1.24	-8.8
15.5	59	PDK1-5	4rrv	1.41	-8.7
16	60	UBC13	4onm	1.35	-7.8
17.1	61	MyD88-1	2y92	3.01	-7
17.2	62	MyD88-2	3ub2	2.4	-7.6

Figures S1-S3. Docking informational interaction of 2a and PARP1/CK2/AKT.

(a) (b) Figure S1. 2a and PARP1 combined mode (a) and 2D interaction diagram (b).

Figure S2. 2a and CK2 combined mode (a) and 2D interaction diagram (b).

