Studies of copper trafficking in a mouse model of Alzheimer's disease by positron emission tomography using ⁶⁴Cu acetate and ⁶⁴CuGTSM.

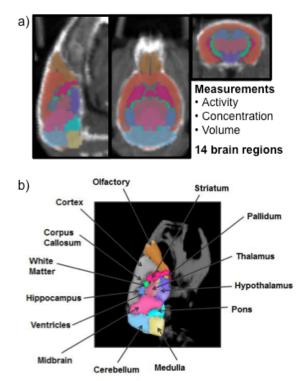
Erica M. Andreozzi, Julia Baguña Torres, Kavitha Sunassee, Joel Dunn, Simon Walker-Samuel, Istvan Szanda and Philip J. Blower¹ Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, United Kingdom UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom

Supplemental Data:

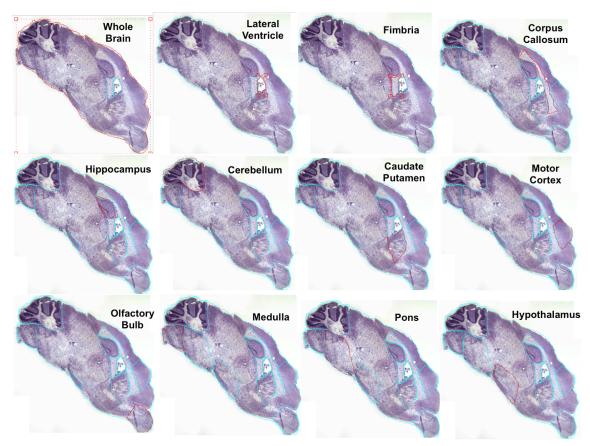
Materials and Methods

Radiolabeling of GTSM with ⁶⁴Cu

⁶⁴CuCl₂ was initially buffered with a 3 M solution of sodium acetate to pH 6. To this 10 μL of a 1 mg/mL solution of GTSM ligand in dimethyl sulfoxide (DMSO) were added. The reaction mixture was vortexed for 1 minute and allowed to stand at room temperature for 5-10 minutes. The resulting ⁶⁴CuGTSM solution was then loaded onto a C₁₈ Sep-Pak cartridge (previously conditioned with ethanol and water). The sample was washed though with water (5 mL) and finally eluted in ethanol (2 mL). The initial 0.5 mL ethanol fraction was discarded, the following 20 drops of ethanol, containing the purified ⁶⁴CuGTSM complex, were collected and the remaining fraction was discarded. RadioTLC analysis of the radiolabelled complex was performed before and after purification (R_f = 0.31, RCP≥ 95 %). ⁶⁴CuGTSM in ethanol was then concentrated to ≤ 10 % of the total injection volume (< 200 μL) and reconstituted with sterile 0.9 % saline solution.


Colour scaling for PET image display

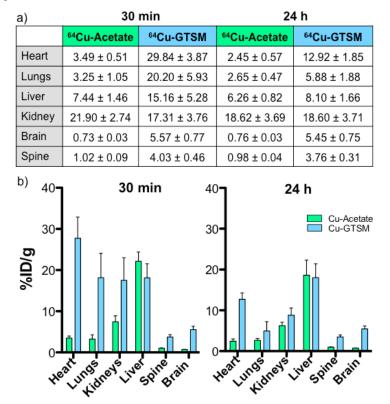
All PET images were displayed as a %ID/g map, and the min/max values of this scaling were normalized for injected dose (ID). We use the following formula to calculate the appropriate Min/Max value (X) to input for the desired %ID/g:


X= [(Desired %ID/g) x ID x voxel volume] / 100,000

where ID is the injected dose measured from the whole-body ROI (excluding the tail) at the time of injection, and 100,000 is a conversion factor (100 to convert the %ID/g to a percentage and 1000 to convert the volume of a voxel (0.016 mm³) to grams based on water density of 1 g/mL). This formula calculates the uptake value that corresponds to the desired %ID/g value based on the ID and the gram value associated with the volume of a single voxel. In this way, all the images are normalized to display min/max corresponding to the same %ID/g.

Mouse Brain Atlas for PET Quantification

Fig. S1. a) Sagittal (left), coronal (middle) and axial (right) views of 3D mouse brain atlas. b) Sagittal view of the 3D mouse brain atlas, labelled with all 14 brain regions



Quantification of co-registered autoradiography and histology images

Fig. S2. Representative images depicting the specific brain regions (whole brain, lateral ventricle, fimbria, corpus callosum, hippocampus, cerebellum, caudate putamen, motor cortex, olfactory bulb, medulla, pons, and hypothalamus), outlined in red, for quantification of ⁶⁴Cu signal in brain autoradiographs via manual region-of-interest (ROI) analysis using the specified in-house LDL software.

In order to verify the anatomical origin of the focal accumulations of ⁶⁴Cu observed in/around the ⁶⁴Cu-acetate autoradiographs, we used in-house software (PhosphorCount) in conjunction with Interactive Data Language (IDL, Boulder, CO) software to co-register autoradiography and histology images generated from the same brain tissue slices. Manual co-registration results in an overlay image (right) with green, monochomatic color scaling (autoradiograph signal intensity) superimposed on a photomicrograph of a haematoxylin stained section (Fig 6 and 8). This type of overlay image enabled us to draw accurate regions of interest (ROIs) in the distinct brain regions outlined by the haematoxylin stain, and then verify our ROI geometries and manual co-registration using the automated co-registration provided by the program. In all circumstances, we ensured that the manual overlay closely matched the objective overlay. This validated the results from our autoradiographic ROI analysis, and provided additional evidence that the regions of high ⁶⁴Cu uptake in the case of ⁶⁴Cu-acetate were indeed in and around the ventricular compartments.

Results

Whole Body PET Biodistribution of ⁶⁴Cu-Acetate and ⁶⁴Cu-GTSM

Fig. S3. Table (a) and corresponding bar charts (b) of values representing the *in vivo* distribution of ⁶⁴Cu uptake (%ID/g) in 6-8-month-old C57BL6J mice at 30 min and 24 h post-injection of ⁶⁴Cu-acetate (green) and ⁶⁴CuGTSM (blue) derived from manual ROI analysis of PET. Data are mean (n=4 for ⁶⁴Cu-acetate mice; n=6 for ⁶⁴Cu-GTSM) ± SD.

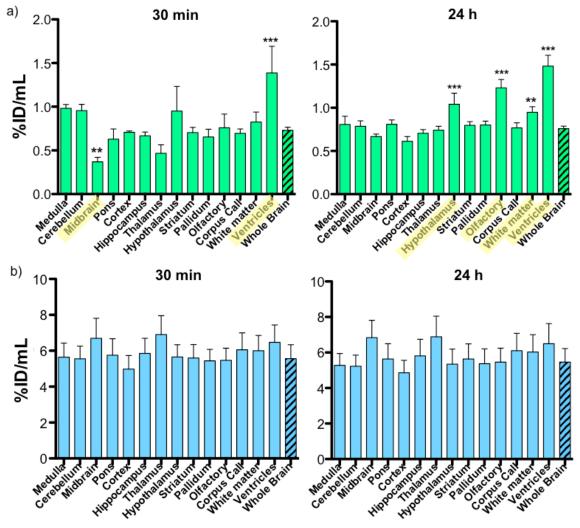

Whole Body PET Biodistribution of ⁶⁴Cu-Acetate and ⁶⁴Cu-GTSM: Individual Animal Time-Activity Relationships in Key Organs

Fig. S4. Individual changes in activity concentration between 30 min and 24 h (%ID/mL) in major organs (heart, lungs, kidney, liver, brain, and spinal cord) following administration of ⁶⁴Cu-GTSM (blue) and ⁶⁴Cu-acetate (green). The uptake of ⁶⁴Cu in all organs except liver (and blood, data not shown) is significantly higher (p<0.001) for ⁶⁴Cu-GTSM than ⁶⁴Cu-acetate at both 30 min and 24 h. ⁶⁴Cu-GTSM clearance (30 min to 24) is only significant for heart, lungs, and kidney. There was no significant clearance of ⁶⁴Cu-acetate from any of the organs between 30 min and 24 h. Each line represents a single animal. Data are n=4 for ⁶⁴Cu-acetate and n=6 for ⁶⁴Cu-GTSM.

Brain Biodistribution of ⁶⁴Cu-Acetate and ⁶⁴Cu-GTSM: %ID/mL of Individual Brain Regions

	30 min		24 h	
	⁶⁴ Cu-Acetate	⁶⁴ Cu-GTSM	⁶⁴ Cu-Acetate	⁶⁴ Cu-GTSM
Medulla	0.98 ± 0.04	5.65 ± 0.78	0.81 ± 0.09	5.30 ± 0.70
Cerebellum	0.96 ± 0.07	5.56 ± 0.71	0.79 ± 0.06	5.16 ± 0.53
Midbrain	0.37 ± 0.05	6.69 ± 1.12	0.67 ± 0.03	6.90 ± 1.06
Pons	0.63 ± 0.12	5.76 ± 0.92	0.81 ± 0.05	5.96 ± 1.42
Cortex	0.71 ± 0.02	4.98 ± 0.76	0.61 ± 0.05	4.83 ± 0.65
Hippocampus	0.67 ± 0.04	5.85 ± 0.84	0.71 ± 0.04	5.62 ± 0.77
Thalamus	0.47 ± 0.10	6.90 ± 1.05	0.74 ± 0.04	6.93 ± 1.22
Hypothalamus	0.95 ± 0.28	5.66 ± 0.68	1.04 ± 0.13	5.35 ± 0.86
Striatum	0.70 ± 0.06	5.59 ± 0.75	0.80 ± 0.04	5.63 ± 0.85
Pallidum	0.85 ± 0.09	5.43 ± 0.65	0.80 ± 0.04	5.41 ± 0.88
Olfactory Bulb	0.76 ± 0.16	5.47 ± 0.67	1.23 ± 0.10	5.58 ± 1.04
Corpus Callosum	0.70 ± 0.05	6.05 ± 0.95	0.77 ± 0.06	6.09 ± 0.96
White Matter	0.83 ± 0.11	6.01 ± 0.85	0.95 ± 0.06	5.89 ± 0.83
Ventricles	1.39 ± 0.30	6.47 ± 0.96	1.48 ± 0.12	6.70 ± 1.50
Whole brain	0.73 ± 0.03	5.57 ± 0.77	0.76 ± 0.03	5.45 ± 0.75

Table S1. Values corresponding to regional brain distribution of ⁶⁴Cu uptake (%ID/mL) in 6-8-month-old C57BL6J mice at 30 min and 24 h post-injection of ⁶⁴Cu-acetate (green) and ⁶⁴Cu-GTSM (blue). Data are mean (n=4 for ⁶⁴Cu-acetate mice; n=6 for ⁶⁴Cu-GTSM) ± SD, with %ID/g resulting from the InviCRO brain atlas applied to the PET datasets. These values of %ID/g correspond to the sum of activity (MBq) within each brain region divided by the sum of activity (MBq) of the whole body (excluding tail).

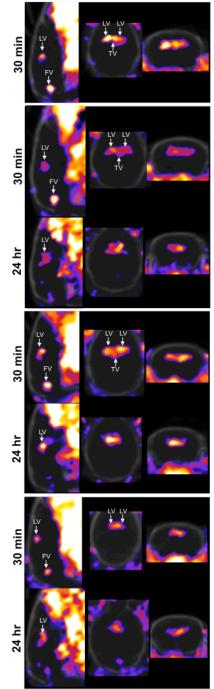

Brain Biodistribution of ⁶⁴Cu-Acetate and ⁶⁴Cu-GTSM: One-way ANOVA Analysis on %ID/g of Individual Brain Regions

Fig. S5. (a) Left: One-way ANOVA analyses of %ID/g (including Dunnett's multiple comparison post-hoc tests) confirm significantly lower %ID/g in the midbrain vs. whole brain (*p*-value <0.01, F=13.39) and significantly higher %ID/g in the ventricles vs. whole brain (*p*-value <0.001, F=13.39) for ⁶⁴Cu-acetate at 30 min; Right: the same analysis at 24 h, showing significantly higher %ID/g in the hypothalamus (*p*-value <0.0001, F=41.29), olfactory bulb (*p*-value <0.0001, F=41.29), white matter (*p*-value <0.001, F=41.29), and ventricles (*p*-value <0.0001, F=41.29) vs. whole brain at 24 h. Data are mean (n=4) ± SD, with %ID/g resulting from the InviCRO brain atlas applied to the PET datasets. (b) A one-way ANOVA with Dunnett's multiple comparison post-hoc tests for ⁶⁴Cu-GTSM confirms no differences of %ID/g in any of the individual brain regions compared to whole brain. Data are mean (n=6) ± SD, with %ID/g resulting from the InviCRO brain atlas applied to the PET datasets.

One-way ANOVA analyses of %ID/mL (including Dunnett's multiple comparison post-hoc tests) confirm significantly lower %ID/mL in the midbrain vs. whole brain (*p*-value <0.01, F=13.39) and significantly higher %ID/g in the ventricles vs. whole brain (*p*-value <0.001, F=13.39) for ⁶⁴Cu-acetate at 30 min; the same analysis and significantly higher %ID/g in the hypothalamus (*p*-

value <0.0001, F=41.29), olfactory bulb (p-value <0.0001, F=41.29), white matter (p-value <0.001, F=41.29), and ventricles (p-value <0.0001, F=41.29) vs. whole brain at 24 h.

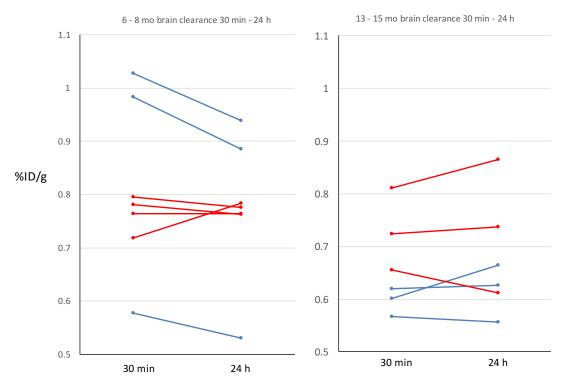

Focal Accumulation of ⁶⁴Cu in the Ventricles of all the ⁶⁴Cu-Acetate Mice

Fig. S6. Representative coronal and sagittal slices though all PET/CT images corresponding to the ⁶⁴Cu-acetate from 4 different mice at 30 min and 24 h post injection. Prominent focal accumulations of ⁶⁴Cu signal are observed in/around the lateral ventricles (LV), third ventricles (TV), and fourth ventricles (FV) at 30 min, with the FV signal attenuating somewhat by 24 h.

Statistical analysis of the autoradiographic images using one-way ANOVA with Dunnett's multiple comparison post-hoc tests confirm significantly higher ROI:WB phosphor density ratio in the lateral (L) ventricles (*p*-value <0.0001, F=64.13), fimbria (*p*-value <0.0001, F=64.13), corpus callosum (*p*-value <0.05, F=64.13), and

hypothalamus (*p*-value <0.0001, F=64.13) compared to olfactory bulb, the region with least signal (right). Additional one-way ANOVA with Dunnett's multiple comparison post-hoc tests confirm significantly higher ROI:OB phosphor density ratio in the lateral (L) ventricles (*p*-value <0.0001, F=38.20) vs. OB, fimbria (*p*-value <0.0001, F=38.20) vs. OB, and hypothalamus (*p*-value <0.001, F=38.20) compared to (OB). It was not, however, possible to definitively identify whether the ventricular space (cerebrospinal fluid, CSF), the choroid plexus or the hippocampal fimbria, or a combination of these, was the most radioactive anatomical structure.

Clearance from brain after administration of ⁶⁴Cu-acetate by PET

Fig. S7. %ID/g in brains of individual mice at 30 and 24 h, measured by quantitative PET. left, 6-8 month old mice; right, 13-15 month old mice. Blue line: TASTPM mice; red line: wild type mice. Only the 6-8 month old TASTPM mice show significant clearance of activity from brain between 30 min and 24 h.