Electronic Supplementary Information

Phosphorus doped NiCo$_2$S$_4$ nanocrystals grown on electrospun carbon nanofibers as ultra-efficient electrocatalysts for hydrogen evolution reaction

Huahao Gu,a Wei Fan*$_b$ and Tianxi Liu*$_{a,b}$

aState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China. E-mail: txliu@fudan.edu.cn or txliu@dhu.edu.cn; Tel: +86-21-55664197; Fax: +86-21-65640293.

bState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China. E-mail: weifan@dhu.edu.cn
Experimental details

1. Materials

Polyacrylonitrile (PAN, Mw = 150000 g mol$^{-1}$) was purchased from Sigma-Aldrich. Multi-walled carbon nanotubes with a diameter of 30-50 nm were obtained from Chengdu Organic Chemicals Co. Ltd., which were produced by the chemical vapor deposition method. N,N-dimethylformamide (DMF) and ethanol were obtained from Shanghai Chemical Reagent Company. Nickel nitrate hexahydrate (Ni(NO$_3$)$_2$·6H$_2$O), cobalt nitrate hexahydrate (Co(NO$_3$)$_2$·6H$_2$O), thiourea (CS(NH$_2$)$_2$), urea (CO(NH$_2$)$_2$) and NaH$_2$PO$_2$·H$_2$O were supplied by China Medicine Company. De-ionized (DI) water was used throughout all the experiments.

2. Preparation of electrospun CNT/CNF membranes

CNT/CNF membranes were prepared via a facile co-electrospinning method, followed by pre-oxidation and carbonization. First, pristine CNTs were treated with a mixture of HNO$_3$ and H$_2$SO$_4$ (v/v = 1/1) at 70 °C for 1 h. The suspension was filtrated and washed for several times, followed by drying to obtain acid-treated CNTs. Second, certain amount of acid-treated CNT was dispersed in 5 mL DMF under ultrasonication. Meanwhile, 1.0 g PAN powder was dissolved in 5 mL DMF under vigorous stirring to form a homogeneous solution. Then, the above solutions were further mixed together to form a uniform bicomponent spinning solution. Finally, the CNT/PAN mixture was sucked into a syringe with a stainless steel needle for the co-electrospinning process. It was carried
out under an applied voltage of 20 kV and a distance of 17 cm between the needle tip and the collector. The obtained CNT/PAN membranes were then pre-oxidized at 250 °C for 2 h with a heating rate of 1 °C min\(^{-1}\) in an air atmosphere, followed by carbonization in a nitrogen flow at 800 °C for 2 h. Thus, with PAN nanofibers turning into carbon nanofibers, the CNT embedded carbon nanofiber (CNT/CNF) membranes were prepared.

3. Preparation of P-NiCo\(_2\)S\(_4\)@CNT/CNF membranes

NiCo\(_2\)S\(_4\)@CNT/CNF membranes were prepared through a one-step hydrothermal procedure. Briefly, Ni(NO\(_3\))\(_2\)·6H\(_2\)O (1 mmol), Co(NO\(_3\))\(_2\)·6H\(_2\)O (2 mmol), thiourea (8 mmol) and urea (4 mmol) were dissolved in 30 mL DI water under vigorous magnetic stirring for 20 min. After that, the transparent pink solution was transferred into a 50 mL Teflon-lined stainless steel autoclave with a piece of CNT/CNF membrane (2 × 2 cm\(^2\)) completely immersed into the solution. The autoclave was sealed and maintained at 160 °C for 12 h. After cooling down to room temperature, the obtained hybrid membranes were rinsed with DI water and ethanol for several times, and finally dried at 80 °C for 8 h.

P-doped NiCo\(_2\)S\(_4\)@CNT/CNF membranes were synthesized through a phosphidation reaction in the tube furnace. 100 mg of NaH\(_2\)PO\(_2\)·H\(_2\)O was placed at the upstream position within the reactor tube while a piece of NiCo\(_2\)S\(_4\)@CNT/CNF membrane was placed at the downstream position. The phosphidation reaction was performed at 300 °C for 1 h with a heating rate of 2
°C min\(^{-1}\) under a steady flow of N\(_2\) gas. After cooling down naturally, the phosphorus-doped hybrid product was prepared, and denoted as P-NiCo\(_2\)S\(_4\)@CNT/CNF.

4. Characterization

Morphology of the products was observed using a field emission scanning electron microscope (FESEM, Ultra 55, Zeiss) at an acceleration voltage of 5 kV. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy were performed under an acceleration voltage of 200 kV with a JEOL JEM2100 TEM. X-ray diffraction (XRD) experiments were conducted from 2\(\theta\) = 5° to 70° on an X’Pert Pro X-ray diffractometer with Cu K\(\alpha\) radiation (\(\lambda = 0.1542\) nm) under a voltage of 40 kV and a current of 40 mA. X-ray photoelectron spectroscopy (XPS) analyses were made with Thermo Scientific ESCALAB 250Xi using an Al K\(\alpha\) sources 1486.6 eV anode. All XPS spectra were corrected using C1s line at 284.6 eV. The electrical conductivity of the samples was measured with a 4-point probes resistivity measurement system (RTS-8).
Table S1 Electrical conductivities for CNF and CNT/CNF membranes.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Ω cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ω cm)</td>
</tr>
<tr>
<td>CNF</td>
<td>126.8</td>
<td>130.1</td>
<td>124.3</td>
<td>134.8</td>
<td>130.4</td>
<td>129.3</td>
</tr>
<tr>
<td>CNT/CNF</td>
<td>51.8</td>
<td>51.4</td>
<td>53.0</td>
<td>53.9</td>
<td>52.2</td>
<td>52.5</td>
</tr>
</tbody>
</table>

Electrical conductivity:

CNF: \(1 ÷ (129.3 ÷ 100) = 0.77 \text{ S m}^{-1}\)

CNT/CNF: \(1 ÷ (52.5 ÷ 100) = 1.90 \text{ S m}^{-1}\)
Fig. S1 FESEM images of NiCo$_2$S$_4$@CNF hybrid.
Fig. S2 FESEM images of NiCo$_2$S$_4$ without template.
Fig. S3 EDS mapping images and spectrum of NiCo$_2$S$_4$@CNT/CNF hybrid.
Fig. S4 Cyclic voltammetry (CV) curves of (A) P-NiCo$_2$S$_4$@CNT/CNF hybrid, (B) P-NiCo$_2$S$_4$@CNF hybrid, (C) NiCo$_2$S$_4$@CNT/CNF hybrid, and (D) NiCo$_2$S$_4$ in the region of 0-0.2 V vs. RHE.
Fig. S5 Calculated exchange current densities of various samples by using extrapolation methods.

Table S2 Calculations of the exchange current densities of various samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log($\mid j \mid$ (mA cm$^{-2}$) at $\eta = 0$ V)</th>
<th>Exchange current density j_0 (mA cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-NiCo$_2$S$_4$@CNT/CNF</td>
<td>-0.10</td>
<td>0.79</td>
</tr>
<tr>
<td>P-NiCo$_2$S$_4$@CNF</td>
<td>-0.75</td>
<td>0.18</td>
</tr>
<tr>
<td>NiCo$_2$S$_4$@CNT/CNF</td>
<td>-1.44</td>
<td>0.04</td>
</tr>
</tbody>
</table>