Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information (ESI)

In situ preparation of Ni nanoparticles in cerium-modified silica aerogels for

coking- and sintering-resistant dry reforming of methane⁺

Xiaoyuan Zhao, [‡] Meirong Lu, [‡] Hongrui Li, Jianhui Fang, Liyi Shi and Dengsong Zhang*

Department of Chemistry, Research Center of Nano Science and Technology, Shanghai University,

Shanghai 200444, P. R. China.

*To whom correspondence should be addressed: Tel: +86-21-66137152;

E-mail: dszhang@shu.edu.cn.

[‡] These authors contributed equally to this work.

Preparation details of Ni/SiO₂-I catalyst

All chemicals were used without any further purification. Nickel nitrate (Ni(NO₃)₃· $6H_2O$, 98%), were produced by Sinopharm Chemical Reagent Company, Chin. The commercial SiO₂ were purchased from Tai Yang Chemical Co., Ltd. Deionized water was used throughout the experiment.

The Ni/SiO₂–I catalyst was prepared by an wetness impregnation method. In a typical synthesis, SiO₂ (1.0g) and Ni(NO₃)₂·6H₂O (0.56g) were added into deionized water (60ml). After stirring for 6 h, the solution was dried in hot air at 70 °C for two days. Powder obtained after the drying was heated to 600 °C at a heating rate of 1 °C /min. It was then calcined at the same temperature (600 °C) in air for 3 h. Ni/ SiO₂–I catalyst was obtained by reduction in a H₂/N₂ flow (having 10% H₂ in N₂ gas with a flow rate of 40 ml/min) at 900 °C for 1 h.

Fig. S1 TEM images of (a) Ni/SiO₂-A and (b) Ni/SiO₂-I catalysts.

Fig. S2 TEM images of NiCe/SiO₂-A catalysts.

Fig. S3 H₂-TPR profiles of Ce-SiO₂-A catalyst and NiCe/SiO₂-A catalyst.

Fig. S4 XPS whole spectra of NiCe/SiO₂-A catalysts.

Fig. S5 Catalytic stability of catalysts prepared by conventional method and in situ method.

Fig. S6 Nitrogen adsorption-desorption isotherms of used NiCe/SiO₂-A and Ni/SiO₂-A catalysts after removing the carbon deposition by O₂-TPO.

Fig. S7 TEM images of (a) Ni/SiO₂-I and (b) Ni/SiO₂-A catalysts after 2400 min stability tests.

Table S1. Summary of stabilities of Ni-based catalysts in DRM reaction

Catalysts	Temp. (°C)	Time X	X _{CH4} (%)	X _{CH4} (%)	Stability	Ref
		(h)	T=0h	T=Xh	loss(%)	
Ni/SBA-15	750	20	86	82	4	1
Ni/mSiO ₂	750	20	88	80	8	2
Ni/Al ₂ O ₃ -A	750	30	91	77	16	3
Ni/SiO ₂ –F	700	6	62	56	6	4
Ni-MgO-Al ₂ O ₃ @m-SiO ₂	750	8	80	77	3	5
NiMg/SBA-15-C	700	100	66	52	14	6
NiCe/SiO ₂ -A	750	40	86	84	2	This work

Reference

1. T. Xie, L. Y. Shi, J. P. Zhang, D. S. Zhang, Chem. Commun., 2014, 50, 7250-7253.

2. T. Xie, X. Y. Zhao, J. P. Zhang, L. Y. Shi, D. S. Zhang, International journal of hydrogen energy, 2015, 40, 9685-9695.

3. X. Y. Zhao, Y. Cao, H. R. Li, J. P. Zhang, L. Y. Shi, D. S. Zhang, RSC Adv., 2017, 7, 4735-4745.

4. S. Wen, M. Liang, J. Zou, S. Wang, X. Zhu, L. Liu and Z.-j. Wang, J. Mater. Chem. A, 2015, 3, 13299-13307.

5. X. Du, D. Zhang, R. Gao, L. Huang, L. Shi, J. Zhang, Chem. Commun., 2013, 49, 6770-6772.

6. N. Wang, K. Shen, X. Yu, W. Qian, W. Chu, Catal. Sci. Technol. 2013, 3, 2278-2287.