Supporting Information. (To be published in New Journal of Chemistry.)

Low temperature Decomposition of Ozone by Facilely Synthesized Cuprous Oxide Catalyst

Shuyan Gonga,b, Wenhui Lia,b, Zheng Xiea, Xiang Maa,b, Haidi Liua, Ning Hana,c,*, Yunfa Chena,c,*

Figure S1. XRD patterns of Cu\textsubscript{2}O crystals synthesized with various morphologies
Figure S2. SEM images of the Cu$_2$O crystals synthesized with different PVP mass and AA adding rate: (a) 0.2 g, dumping (b) 1 g, dumping (c) 0 g, 0.20 ml min$^{-1}$ (d) 0 g, 0.40 ml min$^{-1}$.
Figure S3. SEM images of the cube Cu₂O crystals synthesized with various size (a1-d1) and corresponding size distribution histograms (a2-d2)
Figure S4. XRD patterns of Cu₂O crystals synthesized with various morphologies (a) and cubic Cu₂O with different size (b) after ozone test.

The XRD peaks of SiO₂ in used catalysts originate from mixed quartz sand support.
Figure S5. Ozone conversion as a function of temperature over quartz sand. (Ozone inlet concentration 20 ppm, SV 60000 ml g⁻¹ h⁻¹.)