Supporting Information

Hypochlorite promoted inhibition of photo-induced electron transfer in phenothiazine-borondipyrromethene donor-acceptor dyad: A cost-effective and metal-free “turn-on” fluorescent chemosensor for hypochlorite

Disha Soni, a Suneel Gangada, a Naresh Duvva, b Tapta Kanchan Roy, c Surendra Nimesh, d Geeta Arya, d Lingamallu Giribabu b, * and Raghu Chitta a, *

a Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandar Sindri, Tehsil: Kishangarh, Dist. Ajmer, Rajasthan – 305817, India.

b Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana – 500007, India.

c Department of Chemistry and Chemical Sciences, Central University of Jammu, Jammu – 180011, India.

d Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Tehsil: Kishangarh, Dist. Ajmer, Rajasthan – 305817, India.
Table of Contents

Fig. S1
1H NMR spectrum of 10-(4-Formylphenyl)phenothiazine in CDCl$_3$.

Fig. S2
13C NMR spectrum of 10-(4-Formylphenyl)phenothiazine in CDCl$_3$.

Fig. S3
1H NMR spectrum of probe 1 in CDCl$_3$.

Fig. S4
13C NMR spectrum of probe 1 in CDCl$_3$.

Fig. S5
ESI-MS spectrum of probe 1 in acetonitrile.

Fig. S6
Absorbance changes in 1 (4.6 × 10$^{-6}$ M) upon addition of increasing amounts of NaOCl in PBS buffer: ACN (9:1 v/v).

Fig. S7
Solutions of probe 1 in PBS buffer with increasing amounts of NaOCl in presence of (a) visible light and (b) UV-light of λ = 365 nm.

Fig. S8
Fluorescence changes in {1 (2.3 × 10$^{-6}$ M) + NaOCl (4.54 × 10$^{-6}$ M)} w.r.t. time (in minutes) in PBS buffer: ACN (9:1 v/v).

Fig. S9
Fluorescence changes of 1 (2.3 × 10$^{-6}$ M) upon addition of increasing amounts of H$_2$O$_2$ in PBS buffer:ACN (9:1 v/v).

Fig. S10
Fluorescence changes in 1 (2.3 × 10$^{-6}$ M) upon addition of increasing amounts of 1OH in PBS buffer:ACN (9:1 v/v).

Fig. S11
Fluorescence changes in 1 (2.3 × 10$^{-6}$ M) upon addition of increasing amounts of 1O$_2$ in PBS buffer:ACN (9:1 v/v).

Fig. S12
Fluorescence changes of 1 (2.3 × 10$^{-6}$ M) upon addition of increasing amounts of O$_2^-$ in PBS buffer:ACN (9:1 v/v).

Fig. S13
Fluorescence changes in 1 (2.3 × 10$^{-6}$ M) upon addition of increasing amounts of HCl in PBS buffer:ACN (9:1 v/v).

Fig. S14
S····N distance (brown), dihedral angle around S····N axis (black), and natural bond orbital (NBO) charges (blue) of N, S, and O of (a) BODIPY, (b) phenyl phenothiaizine and its oxidized products i.e., sulfoxide and sulfone, and (c) dyads 1, 1+O, and 1+2O calculated using triple hybrid B3LYP method with 6-311+G* set.

Fig. S15
Molecular Electron Potential maps (MEPs) and frontier orbitals of 1, (1+O), and (1+2O) calculated using triple hybrid B3LYP method with 6-311 +G* set.
Fig. S1. 1H NMR spectrum of 10-(4-Formylphenyl)phenothiazine in CDCl$_3$.

Fig. S2. 13C NMR spectrum of 10-(4-Formylphenyl)phenothiazine in CDCl$_3$.
Fig. S3. 1H NMR spectrum of probe 1 in CDCl$_3$.

Fig. S4. 1H NMR spectrum of probe 1 in CDCl$_3$.
Supporting Information

Fig. S5. ESI-MS spectrum of probe 1 in acetonitrile.

Fig. S6: Absorbance changes in 1 (4.6 × 10^{-6} M) upon addition of increasing amounts of NaOCl in PBS buffer: ACN (9:1 v/v).
Fig. S7. Solutions of probe 1 in PBS buffer with increasing amounts of NaOCl in presence of (a) visible light and (b) UV-light of $\lambda = 365$ nm.

Fig. S8: Fluorescence changes in {1 (2.3 \times 10^{-6} M) + NaOCl (4.54 \times 10^{-6} M)} w.r.t. time (in minutes) in PBS buffer:ACN (9:1 v/v).
Fig. S9: Fluorescence changes of 1 (2.3 × 10^{-6} M) upon addition of increasing amounts of H_2O_2 in PBS buffer:ACN (9:1 v/v).

Fig. S10: Fluorescence changes in 1 (2.3 × 10^{-6} M) upon addition of increasing amounts of *OH in PBS buffer:ACN (9:1 v/v).
Supporting Information

Fig. S11: Fluorescence changes in 1 (2.3 × 10⁻⁶ M) upon addition of increasing amounts of \(^1\text{O}_2\) in PBS buffer:ACN (9:1 v/v).

Fig. S12: Fluorescence changes in 1 (2.3 × 10⁻⁶ M) upon addition of increasing amounts of \(\text{O}_2^-\) in PBS buffer:ACN (9:1 v/v).
Fig. S13: Fluorescence changes in 1 (2.3 \times 10^{-6} \text{ M}) upon addition of increasing amounts of HCl in PBS buffer:ACN (9:1 v/v).
Fig. S14. S–N distance (brown), dihedral angle around S–N axis (black), and natural bond orbital (NBO) charges (blue) of N, S, and O of (a) BODIPY, (b) phenyl phenothiaizine and its oxidized products i.e., sulfoxide and sulfone, and (c) dyads 1, 1+O, and 1+2O calculated using triple hybrid B3LYP method with 6-311+G* set.
Fig. S15. Molecular Electrostatic Potential maps (MEPs) and frontier orbitals of 1, (1+O), and (1+2O) calculated using triple hybrid B3LYP method with 6-311 +G* set.