Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Ag incorporated CeO₂ Nano Cauliflowers for High Performance Supercapacitor Devices

Nallappan Maheswari and Gopalan Muralidharan*

Department of Physics, Gandhigram Rural Institute - Deemed University, Dindigul, Tamilnadu, India

*Corresponding author e-mail: <u>muraligru@gmail.com</u>

Fig S1. FT- Raman spectrum of AGC1

Fig S2. SEM images of (a) CeO_2 , (b) AGC1 and (c) AGC3

Fig S3. EDAX analysis of (a) AGC1,(b) AGC3

Fig S4. Nitrogen adsorption- desorption isotherm of CeO₂ and inset shows the pore size distribution

The measured specific surface area of CeO_2 was 49.64 m²/g and the pore size distribution in the range of 5.7nm indicating the mesoporous nature of material.

Fig S5. CV curves of (a) $CeO_{2,}$ (b) AGC1, (c) AGC3 electrodes at different scan rates,

Fig S6. CHDH curves of (a) $CeO_{2,}$ (b) AGC1, (c) AGC3 electrodes at different current densities

Fig S7. Variations of specific capacitance of CeO_2 and CeO_2 : Ag electrodes with (a) scan rates (b) current densities