Electronic Supporting Information

Porphyrin stacks as an efficient molecular glue to induce chirality in hetero-component calixarene-porphyrin assemblies

Alessandro D'Urso,^{*a} Nino Marino,^{a,b} Massimiliano Gaeta,^a Maria Silvia Rizzo,^a Domenico Andrea Cristaldi,^a Maria Elena Fragalà,^a Sebastiano Pappalardo,^a Giuseppe Gattuso,^c Anna Notti,^{*c} Melchiorre F. Parisi,^{*c} Ilenia Pisagatti,^c and Roberto Purrello^{*a}

[a] Dr. A. D'Urso, Dr. N. Marino, Dr. M. Gaeta, Dr. M. S. Rizzo, Dr. D. A. Cristaldi, Prof. S. Pappalardo, Prof. R. Purrello
Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy E-mail: rpurrello@unict.it
[b] Current address: School of Biomedical Sciences, SAAD, Ulster University, Cromore road,

[c] Prof. G. Gattuso, Prof. A. Notti, Dr. I. Pisagatti, Prof. M. F. Parisi Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy

[[]b] Current address: School of Biomedical Sciences, SAAD, Ulster University, Cromore road, BT521SA, Coleraine, Northern Ireland

page

Contents

Additional Figures	
Figure S1	S2
Figure S2	S2
Figure S3	S3
Figure S4	S3
Figure S5	S4

Figure S1. Absorbance variation (at 304 nm) vs pH of a 10 µM solution of tris-calix[4]arene TC4.

Figure S2. UV absorption spectra (λ_{max} = 412 nm) recorded over the course of the titration of an aqueous solution of tris-calix[4]arene TC4 (0.5 µM) with successive aliquots of an aqueous solution of CuTPPS ([CuTPPS] ranged from 0.125 to 2.5 µM).

Figure S3. Fluorescence titration of an aqueous solution of tris-calix[4]arene TC4 (10 μ M) with successive aliquots of aqueous solutions of CuTPPS ([CuTPPS] ranged from 2.5 μ M to 10 μ M), NiTPPS ([NiTPPS] ranged from 2.5 μ M to 10 μ M) and MnTPPS ([MnTPPS] ranged from 2.5 μ M to 15 μ M).

Figure S4. UV titration of an aqueous solution of tris-calix[4]arene TC4 (10 μ M) with successive aliquots of aqueous solutions of MnTPPS ([MnTPPS] ranged from from 3.33 μ M to 10 μ M), NiTPPS ([NiTPPS] ranged from 3.33 μ M to 10 μ M) and CuTPPS ([CuTPPS] ranged from 3.33 μ M to 20 μ M).

Figure S5. Variation in the absorbance of the CuTPPS Soret band ($\lambda_{max} = 412 \text{ nm}$) observed upon: *i*) increase of the porphyrin concentration in water (black trace (a)) and *ii*) portion-wise addition of CuTPPS to a 0.5 μ M aqueous solution of TC4 at pH 2 (trace (b)). The almost overlapping datapoints represented by the red dot and blue square refer to the absorption of the 3:1-(CuTPPS/TC4) and 3:1-9-(CuTPPS/TC4/(S)-C4) assemblies, respectively. The changes in slope of trace (b) – corresponding to break-points A, B, C, D, E and F– indicate the ratio of the components at which the 3:1:9-, 6:1:9-, 8:1:9-, 10:1:9-, 11:1:9- and 12:1:9-(CuTPPS/TC4/(S)-C4) assemblies, respectively, are fully formed. For comparison, trace (c) reports the data-points obtained in an experiment similar to the one reported in Figure 3 where first TC4 (an additional 3 equiv.) and then CuTPPS (up to 13 equiv.) were added to an aqueous solution of the 3:1-(CuTPPS/TC4) core complex.