Electronic Supplementary Information

Synthesis and biological evaluation of 4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamides and their zinc(II) complexes as candidate antidiabetic agents

Ryota Saito,*a,b Moe Tamura,a Saya Kawano,a Yutaka Yoshikawa,c Akihiro Kato,a Kaname Sasaki,a and Hiroyuki Yasuida

a Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510 Japan
b Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
c Department of Health, Sports and Nutrition, Kobe Women’s University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan.
d Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.

Contents

A general procedure for synthesizing 1-arylmethyl-4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamides (5a–e) S3

A general procedure the Reactions of 5a–e with diethyl oxalate S3

Fig. S1. 1H NMR spectrum of 5a (400 MHz, CDCl3) S4

Fig. S2. 1H NMR spectrum of 5b (400 MHz, CDCl3) S5

Fig. S3. 1H NMR spectrum of 5c (400 MHz, CDCl3) S6

Fig. S4. 1H NMR spectrum of 5d (400 MHz, CDCl3) S7

Fig. S5. 1H NMR spectrum of 5e (400 MHz, CDCl3) S8

Fig. S6. 1H NMR spectra of (a) the products obtained in the reaction of 5a with diethyl oxalate and (b) 1a (400 MHz, DMSO-d6) S9

Fig. S7. 1H NMR spectrum of 8a (400 MHz, CDCl3) S10

Fig. S8. 13C NMR spectrum of 8a (100 MHz, CDCl3) S11

Fig. S9. 1H NMR spectrum of 8b (400 MHz, CDCl3) S12

Fig. S10. 13C NMR spectrum of 8b (100 MHz, CDCl3) S13

Fig. S11. 1H NMR spectrum of 8c (400 MHz, CDCl3) S14

Fig. S12. 13C NMR spectrum of 8c (100 MHz, CDCl3) S15

Fig. S13. 1H NMR spectrum of 8d (400 MHz, CDCl3) S16
Fig. S14. 13C NMR spectrum of 8d (100 MHz, CDCl$_3$) S17

Fig. S15. 1H NMR spectrum of 8e (400 MHz, CDCl$_3$) S18

Fig. S16. 13C NMR spectrum of 8e (100 MHz, CDCl$_3$) S19

Fig. S17. 1H NMR spectrum of 9a (400 MHz, CDCl$_3$) S20

Fig. S18. 13C NMR spectrum of 9a (100 MHz, CDCl$_3$) S21

Fig. S19. 1H NMR spectrum of 9b (400 MHz, CDCl$_3$) S22

Fig. S20. 13C NMR spectrum of 9b (100 MHz, CDCl$_3$) S23

Fig. S21. 1H NMR spectrum of 9c (400 MHz, CDCl$_3$) S24

Fig. S22. 13C NMR spectrum of 9c (100 MHz, CDCl$_3$) S25

Fig. S23. 1H NMR spectrum of 9d (400 MHz, CDCl$_3$) S26

Fig. S24. 13C NMR spectrum of 9d (100 MHz, CDCl$_3$) S27

Fig. S25. 1H NMR spectrum of 9e (400 MHz, CDCl$_3$) S28

Fig. S26. 13C NMR spectrum of 9e (100 MHz, CDCl$_3$) S29

Fig. S27. 1H NMR spectrum of 1a (400 MHz, CDCl$_3$) S30

Fig. S28. 13C NMR spectrum of 1a (100 MHz, CDCl$_3$) S31

Fig. S29. 1H NMR spectrum of 1b (400 MHz, CDCl$_3$) S32

Fig. S30. 13C NMR spectrum of 1b (100 MHz, CDCl$_3$) S33

Fig. S31. 1H NMR spectrum of 1c (400 MHz, CDCl$_3$) S34

Fig. S32. 13C NMR spectrum of 1c (100 MHz, CDCl$_3$) S35

Fig. S33. 1H NMR spectrum of 1d (400 MHz, CDCl$_3$) S36

Fig. S34. 13C NMR spectrum of 1d (100 MHz, CDCl$_3$) S37

Fig. S35. 1H NMR spectrum of 1e (400 MHz, CDCl$_3$) S38

Fig. S36. 13C NMR spectrum of 1e (100 MHz, CDCl$_3$) S39

Fig. S37. 1H NMR spectrum of 10a (400 MHz, DMSO-d$_6$) S40

Fig. S38. 1H NMR spectrum of 10b (400 MHz, DMSO-d$_6$) S41

Fig. S39. 13C NMR spectrum of 10c (400 MHz, DMSO-d$_6$) S42

Fig. S40. 1H NMR spectrum of 10d (400 MHz, DMSO-d$_6$) S43

Fig. S41. 1H NMR spectrum of 10e (400 MHz, DMSO-d$_6$) S44
A general procedure for synthesizing 1-arylmethyl-4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamides (5a–e)

Under argon atmosphere, to a solution of benzylamine (1.00 ml, 9.14 mmol) in dry ethanol (3 ml) was added slowly acrylamide (0.85 g, 11.9 mmol) at 0 °C, and then the mixture was stirred at room temperature for 1–7 days. After evaporation of the solvent, the obtained solid was purified by column chromatography on silica gel (46-50 mm) with chloroform/methanol mixed solvent system as an eluent to afford the product. All the products are known, and therefore the identification of these compounds were carried out only by means of 1H NMR without further purification.

3-(Benzyamino)propanamide (5a) [CAS ID: 16490-80-5]

Yield 82%. 1H NMR (400 MHz, CDCl$_3$) δ/ppm 7.46 (s, 1H), 7.34–7.22 (m, 6H), 6.23 (s, 1H), 3.77 (s, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 2.37 (t, $J = 6.0$ Hz, 2H).

3-[(4-Methylphenyl)methyl]amino]propanamide (5b) [CAS ID: 99981-59-6]

Yield 77%. 1H NMR (400 MHz, CDCl$_3$) δ/ppm 7.61 (s, 1H), 7.18 (d, $J = 8.0$ Hz, 2H), 7.14 (d, $J = 8.0$ Hz, 2H), 5.32 (br. s, 1H), 3.76 (s, 2H), 2.91 (t, $J = 5.9$ Hz, 2H), 2.39 (t, $J = 5.9$ Hz, 2H), 2.34 (s, 3H).

3-[(4-Fluorophenyl)methyl]amino]propanamide (5c) [CAS ID: 1094453-44-7]

Yield 79%. 1H NMR (400 MHz, CDCl$_3$) δ/ppm 7.80 (s, 2H), 7.78 (s, 1H), 6.49 (br. s, 1H), 3.77 (s, 2H), 2.91 (t, $J = 5.8$ Hz, 2H), 2.41 (t, $J = 5.8$ Hz, 2H).

3-[(4-Chlorophenyl)methyl]amino]propanamide (5d) [CAS ID: 807277-73-2]

Yield 71%. 1H NMR (400 MHz, CDCl$_3$) δ/ppm 7.33–7.11 (m, 5H), 5.34 (br. s, 1H), 3.78 (s, 2H), 2.90 (t, $J = 5.9$ Hz, 2H), 2.41 (t, $J = 5.9$ Hz, 2H).

{(3,5-bis(trifluoromethyl)phenylmethyl)amino]propanamide (5e) [CAS ID: 1527625-53-1]

Yield 86%. 1H NMR (400 MHz, CDCl$_3$) δ/ppm 7.80 (s, 2H), 7.78 (s, 1H), 6.49 (br. s, 1H), 5.59 (br. s, 1H), 3.94 (s, 2H), 2.93 (t, $J = 5.9$ Hz, 2H), 2.45 (t, $J = 5.9$ Hz, 2H).

A general procedure for the reactions of 5a–e with diethyl oxalate

Under argon atmosphere, to a mixture of 5 (5.74 mmol) and diethyl oxalate (0.85 ml, 6.27 mmol) was added ethanolic sodium ethoxide, prepared by dissolving sodium (203 mg, 8.84 mmol) in dry ethanol (4 mL), and the mixture was refluxed for 1.5 hours. After cooling to room temperature, the resulting colorless precipitate was collected and then dissolved in water. The aqueous solution was acidified with 10% HCl to pH = 3. The resulting precipitate was collected and dried in vacuo to afford the mixture of 1 and 6 as colorless solids. For the reaction of 5a, the yields of 1a and 6a were determined by means of 1H NMR. For 5b–e, the formation of 6b–e2 was confirmed only by TLC analysis, and the resulting mixed products were purified by column chromatography on silica gel (46-50 mm, 50 g) with chloroform/methanol mixture (CHCl$_3$/MeOH = 30/1) as eluent to obtain 1b–e.

Reference

Fig. S1. 1H NMR spectrum of 5a (400 MHz, CDCl$_3$)
Fig. S2. 1H NMR spectrum of 5b (400 MHz, CDCl$_3$)
Fig. S3. 1H NMR spectrum of 5c (400 MHz, CDCl$_3$)
Fig. S4. 1H NMR spectrum of 5d (400 MHz, CDCl₃)
Fig. S5. 1H NMR spectrum of 5e (400 MHz, CDCl$_3$)
Fig. S6. 1H NMR spectra of (a) the products obtained in the reaction of 5a with diethyl oxalate and (b) 1a (400 MHz, DMSO-d_6)
Fig. S7. 1H NMR spectrum of 8a (400 MHz, CDCl$_3$)
Fig. S8. 13C NMR spectrum of 8a (100 MHz, CDCl$_3$)
Fig. S9. 1H NMR spectrum of 8b (400 MHz, CDCl$_3$)
Fig. S10. 13C NMR spectrum of **8b** (100 MHz, CDCl$_3$)
Fig. S11. 1H NMR spectrum of 8c (400 MHz, CDCl$_3$)
Fig. S12. 13C NMR spectrum of 8c (100 MHz, CDCl$_3$)
Fig. S13. 1H NMR spectrum of 8d (400 MHz, CDCl$_3$)
Fig. S14. 13C NMR spectrum of 8d (100 MHz, CDCl$_3$)
Fig. S15. 1H NMR spectrum of 8e (400 MHz, CDCl$_3$)
Fig. S16. 13C NMR spectrum of 8e (100 MHz, CDCl$_3$)
Fig. S17. 1H NMR spectrum of 9a (400 MHz, CDCl$_3$)
Fig. S18. 13C NMR spectrum of 9a (100 MHz, CDCl$_3$)
Fig. S19. 1H NMR spectrum of 9b (400 MHz, CDCl$_3$)
Fig. S20. 13C NMR spectrum of 9b (100 MHz, CDCl$_3$)
Fig. S21. 1H NMR spectrum of 9c (400 MHz, CDCl$_3$)
Fig. S22. 13C NMR spectrum of 9c (100 MHz, CDCl$_3$)
Fig. S23. 1H NMR spectrum of 9d (400 MHz, CDCl$_3$)
Fig. S24. 13C NMR spectrum of 9d (100 MHz, CDCl$_3$)
Fig. S25. 1H NMR spectrum of 9e (400 MHz, CDCl$_3$)
Fig. S26. 13C NMR spectrum of 9e (100 MHz, CDCl$_3$)
Fig. S27. 1H NMR spectrum of 1a (400 MHz, CDCl$_3$)
Fig. S28. 13C NMR spectrum of 1a (100 MHz, CDCl$_3$)
Fig. S29. 1H NMR spectrum of 1b (400 MHz, CDCl$_3$)
Fig. S30. 13C NMR spectrum of 1b (100 MHz, CDCl$_3$)
Fig. S31. 1H NMR spectrum of 1c (400 MHz, CDCl$_3$)
Fig. S32. 13C NMR spectrum of 1c (100 MHz, CDCl$_3$)
Fig. S33. 1H NMR spectrum of 1d (400 MHz, CDCl$_3$)
Fig. S34. 13C NMR spectrum of 1d (100 MHz, CDCl$_3$)
Fig. S35. 1H NMR spectrum of 1e (400 MHz, CDCl$_3$)
Fig. S36. 13C NMR spectrum of 1e (100 MHz, CDCl$_3$)
Fig. S37. 1H NMR spectrum of 10a (400 MHz, DMSO-d_6)
Fig. S38. 1H NMR spectrum of 10b (400 MHz, DMSO-d_6)
Fig. S39. 1H NMR spectrum of 10c (400 MHz, DMSO-d_6)
Fig. S40. 1H NMR spectrum of 10d (400 MHz, DMSO-d_6)
Fig. S41. 1H NMR spectrum of 10e (400 MHz, DMSO-d$_6$)