Supporting Information

Bimetallic Au-Pd Nanochain Networks: Facile Synthesis and Promising Application in Biaryl Synthesis

Zheng-Jun Wang, Xia Wang, Jing-Jing Lv, Jiu-Ju Feng, Xinhua Xu, and Ai-Jun Wang

Zhiwu Liang

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China

College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China

*Corresponding Authors: Tel./Fax:+86 731 8882-1546; e-mails: xhx1581@hnu.edu.cn;

Tel./Fax:+86 579 82282269; e-mails: ajwang@zjnu.cn
Figure S1. TEM images of the Au-Pd products obtained with 5 mM (A), 70 mM (B) of 4-AP.

Figure S2. XRD pattern of the Au-Pd NNCs after used for 5 times.

Table S1. Elemental analysis of the Au-Pd NNCs by ICP-MS.

<table>
<thead>
<tr>
<th>Element</th>
<th>Before reaction (mg/L)</th>
<th>After fifth cycle (mg/L)</th>
<th>Leaching (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>67.3</td>
<td>66.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Au</td>
<td>33.4</td>
<td>32.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Characterization Data of Products: 2a-n are known compounds. And analytical data of the corresponding products are summarized as follows:

Biphenyl (2a): White solid, MP: 68-69 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 7.35 (t, 2 H, J = 7.4 Hz), 7.44 (t, 4 H, J = 7.6 Hz), 7.59 (d, 4 H, J = 7.6 Hz). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 127.17, 127.25, 128.75, 141.26. MS (EI): m/z 154.1.

4, 4’-Dimethylbiphenyl (2b): White solid, MP: 119-120 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 2.39 (s, 6 H), 7.24 (t, 4 H, J = 5.8 Hz), 7.47 (d, 4 H, J = 8.0 Hz). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 21.51, 124.86, 127.54, 133.31, 141.71. MS (EI): m/z 182.1.

4, 4’-Dimethoxylbiphenyl (2c): White solid, MP: 178-179 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 3.84 (s, 6 H), 6.95 (d, 4 H, J = 8.8 Hz), 7.47 (d, 4 H, J = 8.4 Hz). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 55.16, 113.98, 127.54, 133.31, 158.51. MS (EI): m/z 214.1.

3, 3’-Dimethoxylbiphenyl (2d): White solid, MP: 45-47 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 3.86 (s, 6 H), 6.88-6.91 (m, 2 H), 7.12 (s, 2H), 7.17 (d, 2 H, J = 7.8 Hz), 7.35 (t, 2 H, J = 7.8 Hz). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 55.33, 112.84, 112.97, 119.73, 129.74, 142.66, 159.92. MS (EI): m/z 214.1.

2, 2’-Dimethoxylbiphenyl (2e): White solid, MP: 241-244 °C; 1H NMR
(400 MHz, CDCl₃): δ (ppm) 3.89 (s, 6 H), 6.83 (t, 3 H, J = 7.6 Hz), 8.89 (d, 2H, J = 8.0 Hz), 7.27 (t, 2 H, J = 7.4 Hz), 7.52-7.54 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 56.16, 111.70, 121.82, 128.53, 133.36, 155.86. MS (EI): m/z 214.1.

4, 4'-Dinitro-biphenyl (2f): Pale yellow solid, MP 241-244 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.60 (t, 4 H, J = 4.4 Hz), 8.02 (d, 4 H, J = 8.8 Hz), ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 125.01, 129.99, 132.63, 147.03. MS (EI): m/z 244.2.

2, 2', 6, 6'-Tetramethyl-biphenyl (2g): White solid, MP: 67-70 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.37 (s, 12 H), 7.19(s, 4 H), 7.26 (s, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.40, 125.11, 128.72, 138.10, 141.47. MS (EI): m/z 210.1.

4, 4'-Di-tert-butyl-1,1'-biphenyl (2h): White solid, MP: 127-129 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.28 (s, 18 H), 7.24 (d, 4 H, J = 8.8 Hz), 7.39 (d, 4 H, J = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 26.39, 29.68, 121.81, 122.35, 126.19, 145.24. MS (EI): m/z 266.1.

4, 4'-Biphenol (2i): White solid, MP: 279-282 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.60 (s, 2 H), 6.71 (d, 4 H, J = 8.8 Hz), 7.31 (d, 4 H, J = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 113.01, 117.28, 132.55, 154.49. MS (EI): m/z
4, 4'-Diacetylbiphenyl (2j): White solid, MP: 189-191 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 2.57 (s, 6 H), 7.66 (d, 4 H, $J = 8.4$ Hz), 7.83 (d, 4 H, $J = 8.4$ Hz). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 26.48, 101.10, 129.73, 136.37, 137.92, 197.34. MS (EI): m/z 238.1.

3, 3'-Dichloro-1,1'-biphenyl (2k): White solid, MP: 28-29 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 7.33-7.39 (m, 4 H), 7.42 (d, 2 H, $J = 7.2$ Hz), 7.54 (s, 2 H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 125.28, 127.28, 127.90, 130.14, 134.84, 141.63. MS (EI): m/z 223.1.

1, 6-Diphenylhexane (2l): White solid, MP: 136-139 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 2.09-2.16 (m, 4 H), 2.72 (t, 4 H, $J = 7.4$ Hz), 3.16 (t, 4 H, $J = 6.8$ Hz), 7.20 (t, 6 H, $J = 7.4$ Hz), 7.28 (t, 4 H, $J = 7.4$ Hz). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 6.40, 34.93, 36.26, 126.22, 128.54, 128.60, 140.44. MS (EI): m/z 238.1.

1, 2-Di(naphthalen-2-yl)ethane (2m): White solid, MP: 127-129 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 4.83 (s, 4 H), 7.46-7.50 (m, 6 H), 7.79-7.84 (m, 8 H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 85.49, 125.18, 125.48, 125.92, 126.21, 127.74, 127.90, 128.36, 132.96, 133.39, 138.32. MS (EI): m/z 282.1.
1, 1'-Biisoquinoline (2n): Pale yellow solid, MP: 160-162 °C; 1H NMR (400 MHz, CDCl$_3$) δ (ppm): 7.36 (d, 3 H, J = 7.6 Hz), 7.49 (t, 3 H, J = 8.4 Hz), 7.58-7.63 (m, 3 H), 8.11-8.13 (M, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 120.42, 123.74, 124.83, 128.68, 131.86, 141.42, 143.90, 165.51. MS (EI): m/z 256.1.

5, 5-Biindolyl (2o): White solid, MP: 197-199 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 6.49 (s, 2 H), 7.19 (s, 2 H), 7.23-7.28 (m, 4 H), 7.77 (s, 2 H), 7.18 (s, 2 H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 102.33, 112.45, 113.05, 123.24, 124.87, 125.38, 129.66, 134.43. MS (EI): m/z 232.1.

4, 4'-Difluorobiphenyl (2p): White solid, MP: 94-96 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 7.10 (t, 4 H, J = 8.4 Hz), 7.45-7.484 (m, 4 H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 115.58, 115.80, 128.54, 128.62, 136.39, 136.42, 161.22, 163.67. 19F NMR (400 MHz, CDCl$_3$): δ (ppm) -115.71. MS (EI): m/z 190.1.

6-Phenyl-6,7-dihydro-5H-dibenzo[c,e]azepine (2q): White solid, MP: 85-87 °C; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 4.66 (s, 4 H), 6.56 (d, 4 H, J = 8.0 Hz), 6.72 (t, 1 H, J = 7.2 Hz), 7.13-7.19 (m, 4 H), 7.23-7.29 (m, 4 H), 7.59 (d, 2 H, J = 8.0 Hz); 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 55.37, 112.06, 117.17, 122.77, 127.68, 127.81, 128.57, 129.35, 133.01, 136.48, 148.03. MS (EI): m/z 271.2.

References

1 M. Zeng, Y. Du, C. Qi, S. Zuo, X. Li, L. Shao and X.-M. Zhang, Green Chem.,
2011, 13, 350-356.

NMR spectra of all compounds

![NMR Spectra](image)

1H NMR of 2a in CDCl$_3$
13C NMR of $2a$ in CDCl$_3$

1H NMR of $2b$ in CDCl$_3$
\(^{13} \text{C NMR of } 2b \text{ in CDCl}_3 \)

\(^1 \text{H NMR of } 2c \text{ in CDCl}_3 \)
13C NMR of 2c in CDCl$_3$

1H NMR of 2d in CDCl$_3$
1H NMR of 2e in CDCl$_3$

13C NMR of 2d in CDCl$_3$
13C NMR of 2e in CDCl$_3$

1H NMR of 2f in CDCl$_3$
13C NMR of 2f in CDCl$_3$

1H NMR of 2g in CDCl$_3$
$^{13}\text{C NMR of 2g in CDCl}_3$

$^1\text{H NMR of 2h in CDCl}_3$
13C NMR of 2h in CDCl$_3$

1H NMR of 2i in CDCl$_3$
13C NMR of 2i in CDCl$_3$

1H NMR of 2j in CDCl$_3$
13C NMR of $2j$ in CDCl₃

H NMR of $2k$ in CDCl₃
13C NMR of 2k in CDCl$_3$

H NMR of 2l in CDCl$_3$
13C NMR of 2l in CDCl$_3$

1H NMR of 2m in CDCl$_3$
\[^{13}C \text{ NMR of } 2m \text{ in CDCl}_3 \]

\[^{1}H \text{ NMR of } 2n \text{ in CDCl}_3 \]
13C NMR of 2n in CDCl$_3$

H NMR of 2o in CDCl$_3$
$^{13}\text{C NMR of 2o in CDCl}_3$

$^1\text{H NMR of 2p in CDCl}_3$
13C NMR of 2p in CDCl$_3$

19F NMR of 2p in CDCl$_3$
1H NMR of 2q in CDCl$_3$

13C NMR of 2q in CDCl$_3$