Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Two Luminescent Zn(II)/Cd(II) Metal-Organic Frameworks as Rare

Multifunctional Sensors

Jinfang Zhang*, Linpei Gong, Jiaoyang Feng, Junjie Wu, Chi Zhang*

China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China

Figure S1. View of the asymmetric unit of **1** (two DMF had been squeezed because of their disorder; C grey, N blue, O red, Zn green and all H atoms are omitted for clarity).

Figure S2. Coordination environments of 1,4-ndc in **1** (C grey, O red, Zn green and all H atoms are omitted for clarity).

Figure S3. View of the $(4^4.6^2)$ topology of **1**.

Figure S4.View of the asymmetric unit of **2** (C grey, N blue, O red, Cd green and all H atoms are omitted for clarity).

Figure S5. Coordination environments of 1,4-ndc in2(C grey, O red, Cd green and all H atoms are omitted for clarity).

Figure S6. View of a3-D structure of **2** along the a-axis(C grey, N blue, O red, Cd green and all H atoms are omitted for clarity).

Figure S7. View of a 3-D structure of **2**alongthe c-axis (C grey, N blue, O red, Cd green and all H atoms are omitted for clarity).

Scheme S1. Illustrative assembly of 2(C grey, N blue, O red,Cd green and all H atoms being omitted for clarity).

Figure S9. IR spectra of 2 and that after detection of Al^{3+} .

. 3280-

Wavenumber (cm⁻¹)

Figure S10.PXRD patterns of 1.

Figure S11.PXRD patterns of 2.

Figure S12. Thermogravimetric analysis of

and **2**.

1

Figure S13. Solid-state emission spectra of the MOFs and the free organic ligands ($\lambda_{ex} = 343$ nm for 1 and 3-abpt; $\lambda_{ex} = 350$ nm for 2 and 3-abit).

Figure S14.Emission spectra for **1** in aqueous solutions of different metal ions. The concentration of Fe³⁺ and other metal cations was 1×10^{-2} M, respectively ($\lambda_{ex} = 343$ nm).

Figure S15.Emission spectra for 2 in aqueous solutions of different metal ions. The concentration of Fe³⁺ and other metal cations was 1×10^{-2} M, respectively ($\lambda_{ex} = 350$ nm).

Figure S16.Emission spectra for 1 in aqueous solutions of different metal ions. The concentration of Al³⁺ and other metal cations was 1×10^{-2} M, respectively ($\lambda_{ex} = 343$ nm).

Figure S17.Emission spectra for 2 in aqueous solutions of different metal ions. The concentration of Al³⁺ and other metal cations was 1×10^{-2} M, respectively ($\lambda_{ex} = 350$ nm).

Figure S18. Uv-vis absorption spectra of different metal cations in aqueous solutionsand1-2inthesolidstate.

Figure S19. Emission spectra of 1 in different organic dispersants ($\lambda_{ex} = 343$ nm).

Figure S20. Emission spectra of 2in different organic dispersants ($\lambda_{ex} = 350$ nm).

Figure S21.Emission spectra of 1 dispersed in DMF with the addition of different volume of 5mMDMF solution of NB($\lambda_{ex} = 343$ nm).

Figure S22.Emission spectra of 1 dispersed in DMF with the addition of different volume of 5mMDMF solution of m-DNB($\lambda_{ex} = 343$ nm).

Figure S23.Emission spectra of 1 dispersed in DMF with the addition of different volume of 5mMDMF solution of 2,4-DNT($\lambda_{ex} = 343$ nm).

Figure S24.Emission spectra of 1 dispersed in DMF with the addition of different volume of 5mMDMF solution of PNT($\lambda_{ex} = 343$ nm).

Figure S25.Emission spectra of 2dispersed in DMF with the addition of different volume of 5mMDMF solution of NB($\lambda_{ex} = 350$ nm).

Figure S26.Emission spectra of **2**dispersed in DMF with the addition of different volume of 5mMDMF solution of *m*-DNB($\lambda_{ex} = 350$ nm).

Figure S27.Emission spectra of 2dispersed in DMF with the addition of different volume of 5mMDMF solution of 2,4-DNT($\lambda_{ex} = 350$ nm).

Figure S28.Emission spectra of 2dispersed in DMF with the addition of different volume of 5mMDMF solution of PNT($\lambda_{ex} = 350$ nm).

Figure S29.Stern-Volmer plot for NB of 1 in DMF suspension at the low concentration(0-0.2mM).

Figure S30.Stern-Volmer plot for *m*-DNB of 1 in DMF suspension at the low concentration(0-0.2mM).

Figure S31.Stern-Volmer plot for 2,4-DNT of 1 in DMF suspension at the low concentration(0-0.2mM).

Figure S32.Stern-Volmer plot for PNT of 1 in DMF suspension at the low concentration(0-0.2mM).

Figure S33.Stern-Volmer plot for NB of 2 in DMF suspension at the low concentration(0-0.2mM).

Figure S34.Stern-Volmer plot for *m*-DNB of 2 in DMF suspension at the low concentration(0-0.2mM).

Figure S35.Stern-Volmer plot for 2,4-DNT of 2 in DMF suspension at the low concentration(0-0.2mM).

Figure S36.Stern-Volmer plot for PNT of 2 in DMF suspension at the low concentration(0-0.2mM).

Figure S37. The detection limit for NB of 1 in DMF suspensionwas calculated with $3\sigma/k$ (k: slope, σ : standard) ina linear fitting range from 0 mM to 0.2 mM.

Figure S38. The detection limit for *m*-DNBof **1** in DMF suspensionwas calculated with $3\sigma/k$ (k: slope, σ : standard) ina linear fitting range from 0 mM to 0.2 mM.

Figure S39. The detection limit for 2,4-DNTof **1** in DMF suspensionwas calculated with $3\sigma/k$ (k: slope, σ : standard) ina linear fitting range from 0 mM to 0.2mM.

Figure S40. The detection limit for PNT of **1** in DMF suspensionwas calculated with $3\sigma/k$ (k: slope, σ : standard) ina linear fitting range from 0 mM to 0.2mM.

Figure S41. The detection limit for NB of **2** in DMF suspensionwas calculated with $3\sigma/k$ (k: slope, σ : standard) ina linear fitting range from 0 mM to 0.2mM.

Figure S42. The detection limit for *m*-DNBof **2** in DMF suspensionwas calculated with $3\sigma/k$ (k: slope, σ : standard) ina linear fitting range from 0 mM to 0.2mM.

Figure S43. The detection limit for 2,4-DNTof **2** in DMF suspensionwas calculated with $3\sigma/k$ (k: slope, σ : standard) ina linear fitting range from 0 mM to 0.2mM.

Figure S44. The detection limit for PNT of **2** in DMF suspensionwas calculated with $3\sigma/k$ (k: slope, σ : standard) ina linear fitting range from 0 mM to 0.2mM.

Figure S45. Spectral overlap between the absorption spectra of NB, *m*-DNB, 2,4-DNT, PNT, TNT and the emission spectra of 1 and 2 in DMF media.

Zn(1)-O(1)	2.054(3)	Zn(2)-O(2)	2.025(4)	
Zn(2)-O(3)#2	2.030(4)	Zn(1)-O(4)#2	2.049(4)	
Zn(1)-O(5)#1	2.020(3)	Zn(2)-O(6)#1	2.025(3)	
Zn(2)-O(7)	2.024(3)	Zn(1)-O(8)	2.031(3)	
Zn(1)-N(1)	2.038(4)	Zn(2)-N(6)#3	2.030(4)	
O(5)#1-Zn(1)-O(8)	159.24(15)	O(5)#1-Zn(1)-N(1)	98.40(15)	
O(8)-Zn(1)-N(1)	102.35(15)	O(5)#1-Zn(1)-O(4)#2	89.66(17)	
O(8)-Zn(1)-O(4)#2	87.15(16)	N(1)-Zn(1)-O(4)#2	100.57(15)	
O(5)#1-Zn(1)-O(1)	86.80(17)	O(8)-Zn(1)-O(1)	88.20(17)	
N(1)-Zn(1)-O(1)	102.32(14)	O(4)#2-Zn(1)-O(1)	157.11(15)	
O(7)-Zn(2)-O(2)	87.59(17)	O(7)-Zn(2)-O(6)#1	157.79(15)	
O(2)-Zn(2)-O(6)#1	87.25(17)	O(7)-Zn(2)-N(6)#3	98.66(15)	
O(2)-Zn(2)-N(6)#3	100.36(14)	O(6)#1-Zn(2)-N(6)#3	103.52(15)	
O(7)-Zn(2)-O(3)#2	89.29(16)	O(2)-Zn(2)-O(3)#2	159.65(14)	
O(6)#1-Zn(2)-O(3)#2	88.08(16)	N(6)#3-Zn(2)-O(3)#2	100.00(15)	
Symmetry transformations used to generate equivalent atoms: #1 x, -y+1/2, z-1/2; #2 x-1, y, z; #3 x, -y+1/2, z+1/2.				

TableS1 Selected bond lengths (Å) and angles (°) for 1.

 Table S2 Selected bond lengths (Å) and angles (°) for 2.

Cd(1)-N(1)	2.268(2)	Cd(1)-N(8)#1	2.268(2)	
Cd(1)-O(1)	2.419(2)	Cd(1)-O(2)	2.3492(19)	
Cd(1)-O(3)#2	2.303(2)	Cd(1)-O(4)#3	2.327(2)	
N(1)-Cd(1)-N(8)#1	174.91(9)	N(1)-Cd(1)-O(3)#2	83.77(9)	
N(8)#1-Cd(1)-O(3)#2	91.28(9)	N(1)-Cd(1)-O(4)#3	92.27(8)	
N(8)#1-Cd(1)-O(4)#3	90.20(8)	O(3)#2-Cd(1)-O(4)#3	132.48(8)	
N(1)-Cd(1)-O(2)	95.43(8)	N(8)#1-Cd(1)-O(2)	89.25(8)	
O(3)#2-Cd(1)-O(2)	143.38(7)	O(4)#3-Cd(1)-O(2)	84.12(7)	
N(1)-Cd(1)-O(1)	85.14(8)	N(8)#1-Cd(1)-O(1)	95.93(8)	
O(3)#2-Cd(1)-O(1)	88.35(7)	O(4)#3-Cd(1)-O(1)	138.64(7)	
O(2)-Cd(1)-O(1)	55.22(7)			
Symmetry transformations used to generate equivalent atoms: #1 x, y, z+1; #2 -x-1, y-1/2, -				
z+1/2; #3 x-1, -y+1/2, z-1/2.				